Что называется абсолютным показателем преломления света. Контрактное производство

23.09.2019

ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ (преломления коэффициент) - оптич. характеристика среды, связанная с преломлением света на границе раздела двух прозрачных оптически однородных и изотропных сред при переходе его из одной среды в другую и обусловленная различием фазовых скоростей распространения света и в средах. Величина П. п., равная отношению этих скоростейназ. относительным

П. п. этих сред. Если свет падает на вторую пли первую среду из (где скорость распространения света с) , то величинынназ. абсолютными П. п. данных сред. При этом а закон преломления может быть записан в виде где и- углы падения и преломления.

Величина абсолютного П. п. зависит от природы и строения вещества, его агрегатного состояния, темп-ры, давления и др. При больших интенсивностях П. п. зависит от интенсивности света (см. Нелинейная оптика) . У ряда веществ П. п. изменяется под действием внеш. электрич. поля (Керра эффект - в жидкостях и газах; электрооптич. Поккельса эффект - в кристаллах).

Для данной среды П. п. зависит от длины волны света l, причём в области полос поглощения эта зависимость носит аномальный характер (см. Дисперсия света ).В рентг. области П. п. практически для всех сред близок к 1, в видимой области для жидкостей и твёрдых тел - порядка 1,5; в ИК-области для ряда прозрачных сред 4,0 (для Ge).

Характеризуются двумя П. п.: обыкновенным (аналогично изотропным средам) и - необыкновенным, величина к-рого зависит от угла падения луча и, следовательно, направления распространения света в среде (см. Кристаллооптика ).Для сред, обладающих поглощением (в частности, для металлов), П. п. является комплексной величиной и может быть представлен в виде где га - обычный П. п., - показатель поглощения (см. Поглощение света, Металлооптика) .

П. п. является макроскопич. характеристикой среды и связан с её диэлектрической проницаемостью н магн. проницаемостью Классич. электронная теория (см. Дисперсия света )позволяет связать величину П. п. с микроскопич. характеристиками среды - электронной поляризуемостью атома (или молекулы) зависящей от природы атомов и частоты света, и среды: где N - число атомов в единице объёма. Действующее на атом (молекулу) электрич. полесветовой волны вызывает смещение оптич. электрона из положения равновесия; атом приобретает индуциров. дипольный момент изменяющийся во времени с частотой падающего света, и является источником вторичных когерентных волн, к-рые. интерферируя с падающей на среду волной, образуют результирующую световую волну, распространяющуюся в среде с фазовой скоростьюи потому

Интенсивность обычных (не лазерных) источников света относительно невелика, напряжённость электрич. полясветовой волны, действующего на атом, много меньше внутриатомных электрич. полей, и электрон в атоме можно рассматривать как гармонич. осциллятор. В этом приближении величина и П. п.

Являются величинами постоянными (на данной частоте), не зависящими от интенсивности света. В интенсивных световых потоках, создаваемых мощными лазерами, величина электрич. поля световой волны может быть соизмерима с внутриатомными элект-рич. полями и модель гармония, осциллятора оказывается неприемлемой. Учёт ангармоничности сил в системе электрон - атом приводит к зависимости поляризуемости атомаа следовательно и П. п., от интенсивности света. Связь межу иоказывается нелинейной; П. п. может быть представлен в виде

Где - П. п. при малых интенсивностях света; (обычно принятое обозначение) - нелинейная добавка к П. п., или коэф. нелинейности. П. п. зависит от природы среды, напр. для силикатных стёкол

На П. п. влияет высокая интенсивность ещё и в результате эффекта электрострикции , изменяющего плотность среды, высокочастотного для анизотропных молекул (в жидкости), а также в результате повышения темп-ры, вызванного поглощением

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эффект искажения

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Прохождение луча

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.

Описание закона

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Эффект поляризации

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.


Как сделать бумажный светильник своими руками
Как проверить работоспособность светодиодной ленты

Закон преломления света. Абсолютный и относительный показатели (коэффициенты) преломления. Полное внутреннее отражение

Закон преломления света был установлен опытным путем в XVII веке. При переходе света из одной прозрачной среды в другую направление света может меняться. Изменение направления света на границе разных сред называется преломлением света. Вседствие преломления происходит кажущееся изменение формы предмета. (пример: ложка в стакане с водой). Закон преломления света: На границе 2ух сред преломленный луч лежит в плоскости падения и образует с нормальню к границе раздела,восстановленной в точке падения, угол приломления, такой, что: =n 1-падения, 2 отражения,n-показатель преломления (ф. Снелиуса) - относительный показатель Показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления. Угол падения, при котором преломленный луч начинает скользить по границе раздела двух сред без перехода в оптически более плотную среду – предельный угол полного внутреннего отражения. Полное внутреннее отражение - внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны. В оптике это явление наблюдается для широкого спектра электромагнитного излучения, включая рентгеновский диапазон. В геометрической оптике явление объясняется в рамках закона Снелла. Учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего коэффициента преломления к большему коэффициенту, электромагнитная волна должна полностью отражаться в первую среду. Пример: Яркий блеск многих природных кристаллов, а в особенности - огранённых драгоценных и полудрагоценных камней объясняется полным внутренним отражением, в результате которого каждый вошедший в кристалл луч образует большое количество достаточно ярких вышедших лучей, окрашенных в результате дисперсии.

Преломление или рефракция - это явление, при котором происходит изменение направленности луча света, или иных волн, когда они переходят границу, разделяющую две среды, как прозрачные (пропускающие эти волны), так и внутри среды, в которой непрерывно изменяются свойства.

С явлением преломления мы сталкиваемся довольно часто и воспринимаем обыденным явлением: можем увидеть, что палочка, находящаяся в прозрачном стакане с окрашенной жидкостью, «переломлена» в месте раздела воздуха и воды (рис. 1). При преломлении и отражении света во время дождя мы радуемся, увидев радугу (рис. 2).

Показатель преломления - важная характеристика вещества, связанная с его физико-химическими свойствами. Он находится в зависимости от значений температур, а также от длины световых волн, при которых проводится определение. По данным контроля качества в растворе на показатель преломления влияет концентрация растворенного в нем вещества, а также природа растворителя. В частности, на показатель преломления кровяной сыворотки влияет количество белка, содержащегося в ней.Это происходит из-за того, что при разной скорости распространения световых лучей в средах, имеющих различную плотность, их направление изменяется в месте раздела двух сред. Если мы разделим световую скорость в вакууме на световую скорость в исследуемом веществе, получится показатель преломления абсолютный (индекс рефракции). Практически определяется показатель преломления относительный (n ), представляющий собой отношение световой скорости в воздухе к световой скорости в исследуемом веществе.

Количественно показатель преломления определяют, используя специальный прибор - рефрактометр.

Рефрактометрия - один из наиболее легких методов физического анализа и может применяться в лабораториях контроля качества при производстве химической, пищевой, биологически активных добавок к пище , косметической и других видов продукции с минимальными затратами времени и количества исследуемых проб.

Конструкция рефрактометра основана на том, что лучи света полностью отражаются, когда переходят через границу двух сред (одна из них – это призма из стекла, другая – исследуемый раствор) (рис. 3).

Рис. 3. Схема рефрактометра

От источника (1) световой луч падает на зеркальную поверхность (2), затем, отражаясь, переходит в верхнюю призму осветительную (3), потом в нижнюю призму измерительную (4), которая изготовлена из стекла, обладающего большим показателем преломления. Между призмами (3) и (4) с помощью капилляра наносят 1–2 капельки пробы. Чтобы не нанести призме механических повреждений, необходимо не касаться капилляром ее поверхности.

В окуляр (9) видят поле с перекрещенными линиями, чтобы установить границу раздела. Перемещая окуляр, точку пересечения полей нужно совместить с границей раздела (рис. 4).Плоскость призмы (4) играет роль границы раздела, на поверхности которой преломляется световой луч. Так как лучи рассеиваются, граница света и тени получается расплывчатой, радужной. Это явление устраняется компенсатором дисперсии (5). Затем луч пропускается объективом (6) и призмой (7). На пластине (8) имеются штрихи визирные (две прямые линии, пересеченные крестообразно), а также шкала с показателями преломления, которая наблюдается в окуляр (9). По ней и отсчитывается показатель преломления.

Линия раздела границ полей будет соответствовать углу внутреннего полного отражения, зависящего от показателя преломления пробы.

Рефрактометрия применяется с целью установления чистоты и подлинности вещества. Этот метод применяется также, чтобы при контроле качества определить концентрацию веществ в растворах, которую вычисляют по градуировочному графику (график, показывающий зависимость показателя преломления пробы от ее концентрации).

В компании «КоролёвФарм» показатель преломления определяется согласно утвержденной нормативной документации при входном контроле сырья , в экстрактах собственного производства , а также при выпуске готовой продукции. Определение производится квалифицированными сотрудниками аккредитованной физико-химической лаборатории с помощью рефрактометра ИРФ – 454 Б2М.

Если по результатам входного контроля сырья показатель преломления не соответствует необходимым требованиям, отделом контроля качества оформляется Акт о несоответствии, на основании которого данная партия сырья возвращается поставщику.

Методика определения

1. Перед началом измерений проверяется чистота поверхностей призм, соприкасающихся между собой.

2. Проверка точки нуля. На поверхность призмы измерительной наносим 2÷3 капли воды дистиллированной, осторожно закрываем призмой осветительной. Открываем осветительное окошко и, применяя зеркало, устанавливаем световой источник в наиболее интенсивном направлении. Вращая винты окуляра, получаем в его поле зрения четкое, резкое разграничение темного и светлого полей. Вращаем винт и наводим линию тени и света так, чтобы она совпала с точкой, в которой пересекаются линии в верхнем окошке окуляра. На вертикальной линии в нижнем окошке окуляра видим нужный результат – показатель преломления воды дистиллированной при 20 ° С (1,333). Если показания другие, устанавливаем винтом показатель преломления на значение 1,333, и с помощью ключа (снять винт регулировочный) приводим границу тени и света к месту точки пересечения линий.

3. Определяем коэффициент преломления. Приподнимаем камеру призмы осветительной и бумагой фильтровальной или салфеткой марлевой снимаем воду. Далее наносим 1-2 капли испытуемого раствора на поверхность призмы измерительной и закрываем камеру. Вращаем винты до момента, пока границы тени и света не совпадут с точкой пересечения линий. На вертикальной линии в нижнем окошке окуляра видим нужный результат – показатель преломления исследуемой пробы. Производим подсчет коэффициента преломления по шкале в нижнем окошке окуляра.

4. Используя градуировочный график, устанавливаем взаимосвязь между концентрацией раствора и показателем преломления. Чтобы построить график необходимо приготовить стандартные растворы нескольких концентраций, используя препараты химически чистых веществ, измерить их показатели преломления и отложить полученные значения на оси ординат, на оси абсцисс отложить соответствующие концентрации растворов. Необходимо выбирать интервалы концентраций, при которых между концентрацией и показателем преломления наблюдается зависимость линейная. Измеряем показатель преломления исследуемой пробы и с помощью графика определяем его концентрацию.

Преломление света - явление, при котором луч света, переходя из одной среды в другую, изменяет направление на границе этих сред.

Преломление света происходит по следующему закону:
Падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред:
,
где α - угол падения,
β - угол преломления,
n - постоянная величина, не зависящая от угла падения.

При изменении угла падения изменяется и угол преломления. Чем больше угол падения, тем больше угол преломления.
Если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения: β < α.
Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.

абсолютный показатель преломления вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде n=c/v
Величина n, входящая в закон преломления, называется относительным показателем преломления для пары сред.

Величина n есть относительный показатель преломления среды В по отношению к среде А, а n" = 1/n есть относительный показатель преломления среды А по отношению к среде В.
Эта величина при прочих равных условиях больше единицы при переходе луча из среды более плотной в среду менее плотную, и меньше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая.
Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на нее из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления.

(Абсолютный - относительно вакуума.
Относительный - относительно любого другого вещества (того же воздуха, например).
Относительный показатель двух веществ есть отношение их абсолютных показателей.)

Полное внутреннее отражение - внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны.

В оптике это явление наблюдается для широкого спектра электромагнитного излучения, включая рентгеновский диапазон.

В геометрической оптике явление объясняется в рамках закона Снелла. Учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего показателя преломления к большему показателю, электромагнитная волна должна полностью отражаться в первую среду.

В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду - там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.

Законы преломления света.

Из всего сказанного заключаем:
1 . На границе раздела двух сред различной оптической плотности луч света при переходе из одной среды в другую меняет своё направление.
2. При переходе луча света в среду с большей оптической плотностью угол преломления меньше угла падения; при переходе луча света из оптически более плотной среды в среду менее плотную угол преломления больше угла падения.
Преломление света сопровождается отражением, причём с увеличением угла падения яркость отражённого пучка возрастает, а преломлённого ослабевает. Это можно увидеть проводя опыт, изображённом на рисунке. Следовательно, отражённый пучок уносит с собой тем больше световой энергии, чем больше угол падения.

Пусть MN -граница раздела двух про зрачных сред, например, воздуха и воды, АО -падающий луч, ОВ - преломленный луч, -угол падения, -угол преломления, -скорость распространения света в первой среде, - скорость распространения света во второй среде.



Похожие статьи
 
Категории