Какая сила действует на проводник. Действие магнитного поля на ток

20.09.2019

Поместим между полюсами магнита проводник, по кото­рому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.

Объяснить это можно следующим образом. Вокруг провод­ника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направ­лены так же, как и силовые линии магнита, а по другую сто­рону проводника - в противопо­ложную сторону. Вследствие это­го с одной стороны проводника (на рисунке 1 сверху) маг­нитное поле оказывается сгущен­ным, а с другой его стороны (на рисунке 1 снизу) - разрежен­ным. Поэтому проводник испыты­вает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.

Рисунок 1. Действие магнитного поля на ток.

Для быстрого определения направления движения провод­ника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).

Рисунок 2. Правило левой руки.

Правило левой руки состоит в следую­щем: если поместить левую руку между полюсами маг­нита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца ру­ки совпадали с направлением тока в проводнике, то боль­шой палец покажет направ­ление движения проводника.

Итак, на проводник, по которому протекает электри­ческий ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказы­вается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая нахо­дится в магнитном поле (рисунок 3 слева).

Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.

Рисунок 3. Сила взаимодействия магнитного поля и тока.

Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изобра­жено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плос­кость, перпендикулярную магнитным силовым ли­ниям. Отсюда следует, что если проводник паралле­лен магнитным силовым линиям, то сила, дейст­вующая на него, равна нулю. Если же проводник перпендикулярен направ­лению магнитных силовых линий, то сила, действую­щая на него, достигает наибольшей величины.

Сила, действующая на проводник с током, зави­сит еще и от магнитной индукции. Чем гуще рас­положены магнитные си­ловые линии, тем больше сила, действующая на проводник с током.

Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:

Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную маг­нитному потоку.

Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Дей­ствие магнитного поля на ток можно наблюдать даже при от­сутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.

Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электроди­намических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп - магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.

Силы, действующие на проводник.

В электрическом поле на поверхность проводника, а именно здесь расположены электрические заряды, действуют со стороны поля определённые силы. Поскольку напряжённость электростатического поля на поверхности проводника имеет только нормальную составляющую, сила, действующая на элемент площади поверхности проводника, является перпендикулярной этому элементу поверхности. Выражение для рассматриваемой силы, отнесённой к величине площади элемента поверхности проводника, имеет вид:

(1)

где - внешняя нормаль к поверхности проводника, - поверхностная плотность электрического заряда на поверхности проводника. Для заряженной тонкой сферической оболочки растягивающие усилия могут вызвать напряжения в материале оболочки, превышающие предел прочности.

Интересно, что подобные соотношения были предметом исследований таких классиков науки как Пуассон и Лаплас в самом начале XIX века. В соотношении (1) недоумение вызывает множитель 2 в знаменателе. Действительно, а почему правильный результат получается делением пополам выражения ? Рассмотрим один частный случай (рис.1): пусть проводящий шар радиуса содержит на своей боковой поверхности электрический заряд . Поверхностную плотность электрического заряда рассчитать легко: Введём сферическую систему координат (), элемент боковой поверхности шара определим как . Заряд элемента поверхности можно вычислить по зависимости: . Суммарный электрический заряд кольца радиуса и шириной определяется выражением: . Расстояние от плоскости рассматриваемого кольца до полюса сферы (боковая поверхность шара) равно . Известно решение задачи об определении составляющей вектора напряжённости электростатического поля на оси кольца (принцип суперпозиции) в точке наблюдения, отстоящей от плоскости кольца на расстояние :

Вычислим суммарное значение напряжённости электростатического поля, создаваемого поверхностными зарядами, исключая элементарный заряд в окрестности полюса сферы:

Вспомним, что около заряженной проводящей сферы напряжённость внешнего электростатического поля равна

Оказывается, сила, действующая на заряд элемента поверхности заряженного проводящего шара, в 2 раза меньше, чем сила, действующая на такой же заряд, расположенный вблизи боковой поверхности шара, но вне его.

Суммарная сила, действующая на проводник, равна

(5)

Помимо силы со стороны электростатического поля, проводник подвергается действию момента сил

(6)

где - радиус-вектор элемента поверхности dS проводника.

На практике часто оказывается более удобным силовое воздействие электростатического поля на проводник рассчитывать путем дифференцирования электрической энергии системы W. Сила, действующая на проводник, в соответствии с определением потенциальной энергии, равна

а величина проекции вектора момента сил на некоторую ось равна

где - угол поворота тела как целого вокруг рассматриваемой оси. Заметим, что приведенные выше формулы справедливы, если электрическая энергия W выражена через заряды проводников (источники поля!), а вычисление производных производится при постоянных значениях электрических зарядов.

Закон Ампера. Сила, действующая на проводник с током в магнитном поле

где I - сила тока; - вектор, равный по модулю длинеl проводника и совпадающий по направлению с током; - магнитная индукция поля.

Модуль вектора определяется выражением

F=B I l sin,

где α - угол между векторами и .

Сила взаимодействия двух прямых бесконечно длинных параллельных проводников с токами I 1 и I 2 , находящихся на расстоянии d друг от друга, рассчитанная на отрезок проводника длиной l выражается формулой

F =

Магнитный момент контура с током

,

где - вектор, равный по модулю площадиS , охватываемой контуром, и совпадающий по направлению с нормалью к его плоскости.

Механический момент, действующий на контур с током, помещенный в однородное магнитное поле

.

Модуль механического момента

M = p m B sin,

где α - угол между векторами и .

Потенциальная (механическая) энергия контура с током в магнитном поле

Сила, действующая на контур с током в магнитном поле (изменяющемся вдоль оси x)

F =p m
,

где - изменение магнитной индукции вдоль оси Ох, рассчитанное на единицу длины; α - угол между векторами и .

Сила, действующая на заряд, движущийся в магнитном поле (сила Лоренца)

Сила , действующая на заряд q , движущийся со скоростью в магнитном поле с индукциейсила Лоренца), выражается формулой

, или F =q vB sin,

где - угол, образованный вектором скорости движущейся частицы и вектором индукции магнитного поля.

Закон полного тока. Магнитный поток. Магнитные цепи

Циркуляция вектора магнитной индукции вдоль замкнутого контура

,

где B i - проекция вектора магнитной индукции на направление элементарного перемещения
вдоль контураL .

Циркуляция вектора напряженности вдоль замкнутого контура

Закон полного тока (для магнитного поля в вакууме)

,

где  0 - магнитная постоянная;- алгебраическая сумма токов, охватываемых контуром; п - число токов.

Закон полного тока (для произвольной среды)

Магнитный поток Ф через плоский контур площадью S

а) в случае однородного поля

Ф=B S cos; или Ф =B n S ,

где  - угол между вектором нормали к плоскости контура и вектором магнитной индукции ; В n - проекция вектора на нормаль (B n = B cos );

б) в случае неоднородного поля

,

где интегрирование ведется во всей поверхности S .

Потокосцепление, т.е. полный магнитный поток, сцепленный со всеми витками соленоида или тороида

=N Ф,

где Ф - магнитный поток через один виток; N - число витков соленоида или тороида.

Магнитное поле тороида, сердечник которого составлен из двух частей, изготовленных из веществ с различными магнитными проницаемостями:

а) магнитная индукция на осевой линии тороида

,

где I - сила тока в обмотке тороида; N - число ее витков; l 1 и l 2 - длины первой и второй частей сердечника тороида;  1 и  2 -магнитные проницаемости веществ первой и второй частей сердечника тороида;  0 -магнитная постоянная;

б) напряженность магнитного поля на осевой линии тороида в первой и второй частях сердечника

, и

в) магнитный поток в сердечнике тороида

или по аналогии с законом Ома (формула Гопкинсона)

,

где F m - магнитодвижущая сила; R m - полное магнитное сопротивление цепи.

г) магнитное сопротивление участка цепи

Магнитная проницаемостьμ, ферромагнетика связана с магнитной индукцией В поля в нем и напряженностью Н намагничивающего поля соотношением

Определение

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера . Ее обозначения: . Сила Ампера векторная величина. Ее направление определяет правило левой руки: следует расположить ладонь левой руки так, чтобы силовые линии магнитного поля входили в нее. Вытянутые четыре пальца указывали направление силы тока. В таком случае отогнутый на большой палец укажет направление силы Ампера (рис.1).

Закон Ампера

Элементарная сила Ампера определена законом (или формулой) Ампера:

где I – сила тока, – малый элемент длины проводника – это вектор, равный по модулю длине проводника, направленный в таком же направлении как вектор плотности тока, – индукция магнитного поля, в которое помещен проводник с током.

Иначе эту формулу для силы Ампера записывают как:

где – вектор плотности тока, dV – элемент объема проводника.

Модуль силы Ампера находят в соответствии с выражением:

где – угол между векторами магнитной индукции и направление течения тока. Из выражения (3) очевидно, что сила Ампера максимальна в случае перпендикулярности линий магнитной индукции поля по отношению к проводнику с током.

Силы, действующие на проводники с током в магнитном поле

Из закона Ампера следует, что на проводник с током, равным I, действует сила равная:

где магнитная индукция, рассматриваемая в пределах малого кусочка проводника dl. Интегрирование в формуле (4) проводят по всей длине проводника (l). Из выражения (4) следует, что на замкнутый контур с током I, в однородном магнитном поле действует сила Ампера равная

Сила Ампера, которая действует на элемент (dl) прямого проводника с током I 1 , помещённый в магнитное поле, которое создает другой прямой проводник, параллельный первому с током I 2 , равна по модулю:

где d – расстояние между проводниками, Гн/м(или Н/А 2) – магнитная постоянная. Проводники с токами одного направления притягиваются. Если направления токов в проводниках различны, то они отталкиваются. Для рассмотренных выше параллельных проводников бесконечной длины сила Амперана единицу длины может быть вычислена по формуле:

Формулу (6) в системе СИ применяют для получения количественного значения магнитной постоянной.

Единицы измерения силы Ампера

Основной единицей измерения силы Ампер (как и любой другой силы) в системе СИ является: =H

В СГС: =дин

Примеры решения задач

Пример

Задание. Прямой проводник длины l с током I находится в однородном магнитном поле B. На проводник действует сила F. Каков угол между направлением течения тока и вектором магнитной индукции?

Решение. На проводник с током, находящийся в магнитном поле действует сила Ампера, модуль которой для прямолинейного проводника с током расположенном в однородном поле можно представить как:

где – искомый угол. Следовательно:

Ответ.

Пример

Задание. Два тонких, длинных проводника с токами лежат в одной плоскости на расстоянии d друг от друга. Ширина правого проводника равна a. По проводникам текут токи I 1 и I 2 (рис.1). Какова, сила Ампера, действующая на проводники в расчете на единицу длины?

Решение. За основу решения задачи примем формулу элементарной силы Ампера:

Будем считать, что проводник с током I 1 создает магнитное поле, а другой проводник в нем находится.Станем искать силу Ампера, действующую на проводник с током I 2 . Выделим в проводнике (2) маленький элемент dx (рис.1), который находится на расстоянии x от первого проводника. Магнитное поле, которое создает проводник 1 (магнитное поле бесконечного прямолинейного проводника с током) в точке нахождения элементаdxпо теореме о циркуляции можно найти как.

Действие магнитного поля на проводник с током исследовал экспериментально Андре Мари Ампер (1820 г.). Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь эту силу назвали силой Ампера.

  • Сила Ампера - это сила, с которой магнитное поле действует на помещенный в него проводник с током.

Согласно экспериментальным данным модуль силы F :

Пропорционален длине проводника l , находящегося в магнитном поле; пропорционален модулю индукции магнитного поля B ; пропорционален силу тока в проводнике I ; зависит от ориентации проводника в магнитном поле, т.е. от угла α между направлением тока и вектора индукции магнитного поля \(~\vec B\).

модуль силы Ампера равен произведению модуля индукции магнитного поля B , в котором находится проводник с током, длины этого проводника l , силы тока I в нем и синуса угла между направлениями тока и вектора индукции магнитного поля

\(~F_A = I \cdot B \cdot l \cdot \sin \alpha\) ,

  • Этой формулой можно пользоваться: если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой; если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Для определения направления силы Ампера применяют правило левой руки : если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля (\(~\vec B\)) входил в ладонь, четыре вытянутых пальца указывали направление тока (I ), тогда отогнутый на 90° большой палец укажет направление силы Ампера (\(~\vec F_A\)) (рис. 1, а, б).

Рис. 1

Поскольку величина B ∙sin α представляет собой модуль компоненты вектора индукции, перпендикулярной проводнику с током, \(~\vec B_{\perp}\) (рис. 2), то ориентацию ладони можно определять именно этой компонентой - перпендикулярная составляющая к поверхности проводника должна входить в открытую ладонь левой руки.

Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.

Силы, действующие на проводник с током в магнитном поле, широко используются в технике. Электродвигатели и генераторы, устройства для записи звука в магнитофонах, телефоны и микрофоны - во всех этих и во множестве других приборов и устройств используется взаимодействие токов, токов и магнитов и т.д.

Сила Лоренца

Выражение для силы, с которой магнитное поле действует на движущийся заряд, впервые получил голландский физик Хендрик Антон Лоренц (1895 г.). В его честь эта сила называется силой Лоренца.

  • Сила Лоренца - это сила, с которой магнитное поле действует на движущуюся в нем заряженную частицу.

Модуль силы Лоренца равен произведению модуля индукции магнитного поля \(~\vec B\), в котором находится заряженная частица, модуля заряда q этой частицы, ее скорости υ и синуса угла между направлениями скорости и вектора индукции магнитного поля

\(~F_L = q \cdot B \cdot \upsilon \cdot \sin \alpha\).

Для определения направления силы Лоренца применяют правило левой руки : если левую руку расположить так, чтобы вектор индукции магнитного поля (\(~\vec B\)) входил в ладонь, четыре вытянутых пальца указывали направления скорости движения положительно заряженной частицы (\(~\vec \upsilon\)), тогда отогнутый на 90° большой палец укажет направление силы Лоренца (\(~\vec F_L\)) (рис. 3, а). Для отрицательной частицы четыре вытянутых пальца направляют против скорости движения частицы (рис. 3, б).

Рис. 3

Поскольку величина B ∙sin α представляет собой модуль компоненты вектора индукции, перпендикулярной скорости заряженной частицы, \(~\vec B_{\perp}\), то ориентацию ладони можно определять именно этой компонентой - перпендикулярная составляющая к скорости заряженной частицы должна входить в открытую ладонь левой руки.

Так как сила Лоренца перпендикулярна вектору скорости частицы, то она не может изменить значение скорости, а изменяет только ее направление и, следовательно, не совершает работы.

Движение заряженной частицы в магнитном поле

1. Если скорость υ заряженной частицы массой m направлена вдоль вектора индукции магнитного поля, то частица будет двигаться по прямой с постоянной скоростью (сила Лоренца F L = 0, т.к. α = 0°) (рис. 4, а).

Рис. 4

2. Если скорость υ заряженной частицы массой m перпендикулярна вектору индукции магнитного поля, то частица будет двигаться по окружности радиуса R , плоскость которой перпендикулярна линиям индукции (рис. 4, б). Тогда 2-ой закон Ньютона можно записать в следующем виде:

\(~m \cdot a_c = F_L\) ,

где \(~a_c = \dfrac{\upsilon^2}{R}\) , \(~F_L = q \cdot B \cdot \upsilon \cdot \sin \alpha\) , α = 90°, т.к. скорость частицы перпендикулярна вектору магнитной индукции.

\(~\dfrac{m \cdot \upsilon^2}{R} = q \cdot B \cdot \upsilon\) .

3. Если скорость υ заряженной частицы массой m направлена под углом α (0 < α < 90°) к вектору индукции магнитного поля, то частица будет двигаться по спирали радиуса R и шагом h (рис. 4, в).

Действие силы Лоренца широко используют в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и мониторов;
  2. ускорителях заряженных частиц;
  3. экспериментальных установках для осуществления управляемой термоядерной;
  4. МГД-генераторах

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 321-322, 324-327.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. - 2-е изд., исправленное. - Минск: Нар. асвета, 2008. - С. 157-164.


Похожие статьи
 
Категории