Курс лекций. Основные генетические понятия

23.09.2019

История развития генетики началась с теории эволюции, которую опубликовал в 1859 английский натуралист и путешественник Чарльз Дарвин в книге «Происхождение видов».

В 1831 году Дарвин присоединился к пятилетней научной экспедиции изучавшей окаменелости, найденные в породах свидетельствующих о животных, которые жили миллионы лет назад. Также Дарвин отметил, что на Галапагосских островах поддерживается своя собственная разновидность зябликов, которые тесно связаны между собой, но имели незначительные различия, которые, казалось были адаптированы в соответствии с их индивидуальной средой.

По возвращении в Англию, Дарвин на протяжении следующих 20 лет предложил теорию эволюции происходящую в процессе естественного отбора. Книга «Происхождение видов» была кульминацией этих усилий, где он утверждал, что живые существа лучше всего подходит для их среды обитания, у них больше шансов выжить, размножаться и передавать свои характеристики потомкам. Это привело к теории о постепенном изменении видов с течением времени. Его исследования содержат некоторые истины, такие как связь между животной и человеческой эволюцией.

Книга, положившая начало истории развития генетики была крайне противоречивой на то время, так как он бросил вызов доминирующим взглядом в период, когда многие люди буквально думали, что Бог создал мир за семь дней. Он также предположил, что люди были животные и, возможно, произошли от обезьяны. Он отметил, что через тысячи лет эволюции животные имеют свои тела приспособившись к жизни. Если люди произошли от животных на протяжении миллионов лет, определенные врожденные качества остались и сегодня.

1859 — Чарльз Дарвин публикует «Происхождение видов»

Наука узучающая наследственную изменчивость привела к развитию молекулярной биологии для более глубокого понимания механизмов наследственной изменчивости и науке генетика.

Начальный этап развития молекулярной биологии

Начальный этап развития молекулярной биологии принадлежит швейцарскому физиологическому химику Фридриху Мишеру который в 1869 году впервые выявил, как он назвал «нуклеиновые» ядра человеческих белых кровяных клеток, которые мы знаем сегодня, как дезоксирибонуклеиновая кислота (ДНК).

Первоначально Фридрих Мишер изолировал и охарактеризовал компоненты белка, белые кровяные клетки. Для этого он взял из местной хирургической клиники гной-насыщенные бинты, которые он планировал промыть перед фильтрацией белых клеток крови и выделения их различных белков.

Однако, в процессе работы наткнулся на вещество, обладающее необычными химическими свойствами в отличие от белков, с очень высоким содержанием фосфора и устойчивостью к перевариванию белка. Мишер быстро понял, что он открыл новое вещество и почувствовал важность своего открытия. Несмотря на это, потребовалось более 50 лет широкой научной общественности, чтобы оценить его работу.

1869 Фридрих Мишер выделяет «нуклеиновые» кислоты или ДНК

Макромолекула ДНК обеспечивает хранение, передачу из поколения в поколение и реализацию генетической информации

Основные начальные этапы развития генетики

Основные этапы развития генетики начались с учения синтеза дарвинизма и механизмов эволюции живого.

В 1866 году, неизвестный монах Австрийский биолог и ботаник Грегор Мендель был первым человеком, чтобы пролить свет на пути, в котором признаки передаются из поколения в поколение.

Грегор Мендель сегодня считается отцом генетики

Он пользовался не такой известностью в течение своей жизни, и его открытия во многом не принимались в научном сообществе. На самом деле, он был настолько впереди, что потребовалось три десятилетия чтобы его открытия были приняты всерьез.

Между 1856 и 1863 г. Мендель проводил опыты на растениях гороха, пытаясь скрестить и определить «истинную» линию в определенной комбинации. Он выделил семь признаков: высота растения, форма и цвет стручка, форма семян, цвет и положение цветов и окраска.

Он обнаружил, что, когда желтый горох и зеленый горошек растение было выращено вместе, их отпрыски всегда были желтыми. Однако, в следующем поколении растений, зеленый горошек вернулся в соотношении 3:1.

Мендель ввел термины рецессивный и доминантный по отношению к чертам характера, для того, чтобы объяснить этот феномен. Так, в примере, зеленый признак был рецессивным, а желтый признак был доминирующим.

1866 — Грегор Мендель открывает базовые принципы генетики

В 1900 году, через 16 лет после его смерти исследования наследственных признаков гороха Грегора Менделя наконец восприняла широкая научная общественность.

Голландский ботаник и генетик Гуго де Фриз, немецкий ботаник и генетик Карл Эрих Корренс и австриец Эрих Чермак-Зейзенегг все самостоятельно переоткрыли работы Менделя и представили результаты экспериментов по гибридизации с похожими выводами.

В Великобритании, биолог Уильям Бейтсон стал ведущим теоретиком учения Менделя и вокруг него собралась восторженная группа последователей. История развития генетики потребовала три десятилетия чтобы в достаточной степени понять теорию Менделя и найти свое место в эволюционной теории и ввести термин: генетика как наука изучающая наследственную изменчивость .

Этические проблемы развития медицинской генетики

Этические проблемы развития медицинской генетики появились с начала 1900-х годов, когда зародилась наука евгеника (от греч. –«хороший род»). Смысл науки евгеники во влиянии на репродуктивные качества для определенных господствующих рас людей. Наука евгеника — особенно темная глава, которая свидетельствует об отсутствии понимания относительно нового открытие в то время. Термин «евгеника» был впервые использован около 1883 ссылаться на «науку» наследственность и воспитанность.

В 1900 году были переоткрыты теории Менделя, которые нашли регулярной статистической шаблон для характеристики человека как рост и цвет. В угаре исследования, которые последовали, одна мысль ответвляется в социальную теорию науки евгеники. Это было огромное народное движение в первой четверти 20-го века и была представлена как математическая наука, которая может предсказать черты характера и особенности человеческого существа.

Этические проблемы развития медицинской генетики возникли, когда исследователи заинтересовались контролем размножения человеческих существ, так что только люди с лучшими генами могли воспроизвести и улучшить вид. Сейчас это используется в качестве своего рода «научного» расизма, чтобы убедить людей, что некоторые расовые виды были выше других в плане чистоты, интеллекта и т. д. Это свидетельствует об опасностях, которые приходят с практикующей наукой евгеникой без истинного уважения к человечеству в целом.

Многие люди могли видеть, что дисциплина была пронизана неточностями, допущениями и противоречиями, а также поощрение дискриминации и расовой ненависти. Однако, в 1924 году движение получило политическую поддержку, когда Закон об иммиграции был принят большинством в Палате представителей и Сенате США. Закон ввел жесткие квоты на иммиграцию из стран для «низших» рас, таких как Южная Европа и Азия. Когда политический выигрыш и удобная наука евгеника объединили усилия появились этические проблемы развития медицинской генетики.

При продолжении научных исследований и внедрение бихевиоризма (наука о поведении) в 1913 году, популярность евгеники, наконец, начала падать. Ужасы институциональной евгеники в нацистской Германии, которые появились на свет во время 2-й мировой войны полностью уничтожили то, что осталось от движения.

Так, с конца 19 начала 20 века история развития генетики получила основные закономерности передачи наследственных признаков на растительных и животных организмах которые приложили в дальнейшем и к человеку.

Сейчас возникла наука , изучающая процесс старения организма.

В сегодняшний век интеграции очень сложно определить границы практически любой науки. Это касается в том числе и генетики. Мы, конечно, можем использовать заштампованное «наука о наследственности и изменчивости » но это не передает всей сути и масштаба этой дисциплины. При том, что генетика присутствует везде – медицине, истории, криминалистике и даже спорте. А что уж говорить о современной биологии.

Однако еще относительно недавно эта молодая наука была чуть ли не самой обособленной областью биологической науки. И лишь в последней трети прошлого века начался её бурный прогресс.

Как генетика стала всеобъемлющей

Особенностью генетики всегда являлась её синтетическая методология, отличающая её от аналитической методологии остальных направлений биологии. Так, исследуя объект своего изучения, она не делила его на части, а косвенно, наблюдая за целым (соотношение признаков при скрещиваниях) и основываясь на математике, изучала его. Подтверждением же верности её выводов были живые организмы с предсказанными признаками. И как же обособленная наука заняла, возможно, центральное место в современной биологии?

Начиная с 50-х годов ХХ века бурно развивалась другая новая наука - молекулярная биология. Аналитическая наука изначально совершено противоположна генетике. Однако предметы этих двух дисциплин во многом пересекались: они обе занимались изучением передачи и реализации наследственной информации, однако двигались они с противоположных сторон. Генетика, если можно так сказать, «снаружи», молекулярная биология - «изнутри».

И наконец в конце ХХ века генетика и молекулярная биология «встретились», и умозрительные объекты генетических исследований обрели конкретную физико-химическую форму, а молекулярная биология стала синтетической наукой. И именно с этого момента до неразличимости стерлись границы генетики как науки – было невозможно определить, где кончается молекулярная биология или начинается генетика. А для обозначения новой зародившейся синтетической науки появилось название «молекулярная генетика».

А где же классическая генетика?

Титулом «классическая генетика» стали называть генетику домолекулярного периода вместе со всеми её подходами, основанными на теории вероятности и скрещиваниях. Но вместе с этим титулом её отправили в «почетную отставку». Классическая генетика – это наука, в которой не совершается больше открытий, но крайне необходимая для понимания основных закономерностей наследственности и изменчивости, без понимания которых многие области научного знания не достигли бы тех высот, которые им уже покорились.

Когда зародилась генетика?

Принято говорить, что генетика зародилась, когда чешский монах-августинец Грегор Мендель провел свои опыты на горохе. Стоит отметить что научное сообщество того периода не придало значения работам Менделя, и признание они получили спустя не один десяток лет. Но вопросами наследственности и изменчивости ученые занимались и до него, но о их работах вспоминают очень редко.

Так еще в XVIII веке ботаники начали заниматься экспериментальным изучением наследования признаков растений. Стоит упомянуть Йозефа Готлиба Кельрейтера, с 1756 по 1761 г.г., работавшего в Академии наук в Санкт-Петербурге. Именно там он провел первые опыты по искусственной гибридизации растений, результаты 136 были опубликованы.

В опытах с дурманом, табаком и гвоздиками Кельрейтор установил равноправие "матери"и "отца" при передаче признаков потомкам, а также доказал существование пола у растений. Но самым важным вкладом его в науку стал новый метод изучения наследственности - метод искусственной гибридизации. Используя его, французы Огюстен Сажрэ и Шарль Виктор Ноден в середине XIX в., открыли явление доминантности. Все накопленные факты требовали своего осмысления. Именно в осмысление этих фактов и заключается главная залуга Грегора Менделя.

Современная генетика

Современная генетика уже очень далеко шагнула от классического учения Менделя и приобретает все большее значение в сферах медицины, биологии, сельского хозяйства и животноводства. Современная генетика - это прежде всего молекулярная генетика. На ее основе производится селекция полезных микроорганизмов, растений и животных. Генетически модифицированные организмы обладают полезными свойствами, не характерными для их родственников из "дикой" природы. Например, листья генетически модифицированного картофеля являются несъедобными для колорадского жука - злейшего врага картошки и тех, кто ее выращивает. Количество генетически модифицированных продуктов, потребляемых человечеством, растет с каждым годом.

Учитывая тот факт, что огромное количество заболеваний человека являются генетически обусловленными, невозможно переоценить значение генетики для медицины. После того, как в начале 21 века был расшифрован геном человека, методы профилактики наследственных патологий и борьбы с негативным воздействием генов становятся все эффективнее. Например, вероятность и риск развития хронических заболеваний может быть предсказан задолго до рождения ребенка, также появляются методы, позволяющие свести этот риск к минимуму.

Если Вам нужно разобраться с решением задач или по генетике в короткий срок - не стесняйтесь обращаться к нашим авторам. Мы поможем решить любой вопрос с учебой, даже если ситуация кажется безнадежной!

Генетика - наука о наследственности и изменчивости живых организ мов. Все живые организмы (системы) независимо от уровня организации обладают двумя альтернативными свойствами: наследственностью и изменчивостью. Наследственность проявляется в том, что любая особь, популяция или вид в целом стремятся сохранить в ряду поколений присущие им признаки и свойства. Эта способность живых организмов рождать себе подобных лежит в основе поддержания определенной консервативности вида. Однако генетическая стабильность живых систем при резком и значительном изменении среды обитания, вызвавшем дисбаланс процессов адаптации, может привести к их гибели, т. е. исчезновению. В таких условиях сохранность живых систем обеспечивается их способностью утрачивать старые признаки и приобретать новые, т. е. изменчивостью . Множественные варианты наследственных изменений служат материалом для естественного отбора наиболее приспособленных и устойчивых жизненных форм.

Рождение генетики, как науки, обычно связывают с именем Г. Менделя, который во второй половине 19 в. получил первые доказательства материальной природы наследственности. Однако официально наука возникла в 1900 г., когда Г. Де Фриз, К. Корренс и Э. Чермак, независимо друг от друга вторично открыли, законы Г. Менделя. А сам термин "генетика" был предложен в 1909 г. В. Бэтсоном.

В генетике можно выделить два существенно важных раздела: классическую генетику и современную . В развитии классической генетики выделяют ряд этапов:

  • 1 - открытие основных законов наследственности, создание теории мутаций и формирование первых представлений о гене (1900-1910 гг.);
  • 2 - создание хромосомной теории наследственности (1910-1920 гг.);
  • 3 - открытие индуцированного мутагенеза, получение доказательств сложного строения гена, рождение генетики популяций (1920-1940 гг.);
  • 4 - рождение генетики микроорганизмов , установление генетической роли ДНК, решение ряда проблем генетики человека (1940-1953 гг.).

Период развития современной генетики начался с момента расшифровки Дж. Уотсоном и Ф. Криком структуры ДНК в 1953 году.

Классическая генетика вначале представляла собой раздел общей биологии, которая за единицу жизни принимала особь и основные закономерности наследования признаков и изменчивости изучала на уровне организма. По мере интеграции генетики с такими разделами естествознания, как цитология, эмбриология, биохимия, физика, возникали новые направления в науке, а объектами исследования становились клетки животных и растений, бактерии, вирусы, молекулы.

Современная генетика - это комплексная наука, которая включает ряд отдельных дисциплин: генетика животных, генетика растений, биохимическая генетика, радиационная генетика, эволюционная генетика и др.

Общая генетика изучает организацию наследственного материала и общие закономерности наследственности и изменчивости, характерные для всех уровней организации живого.

Молекулярная генетика изучает структуру нуклеиновых кислот, белков и ферментов, первичные дефекты генов и их аномальные продукты; развивает методы картирования хромосом; решает проблемы генной инженерии.

Цитогенетика исследует кариотип человека в условиях нормы и патологии.

Генетика соматических клеток проводит картирование генома человека, используя гибридизацию клеток и нуклеиновых кислот.

Иммуногенетика изучает закономерности наследования антигенной специфичности и генетическую обусловленность иммунных реакций.

Фармакогенетика исследует генетические основы метаболизма лекарственных препаратов в организме человека и механизмы наследственно обусловленной индивидуальной реакции на введение лекарств.

Генетика человека изучает явления наследственности и изменчивости в популяциях человека, особенности наследования признаков в норме и изменения их под действием условий окружающей среды.

Популяционная генетика - определяет частоты генов и генотипов в больших и малых популяциях людей и изучает их изменения под воздействием мутаций, дрейфа генов, миграций, отбора.

Генетика, как составная часть биологии решает ряд задач:

  • 1. Изучение закономерностей наследственности и изменчивости, разработка методов их практического использования.
  • 2. Изучение способов хранения и материальных носителей информации у разных организмов (вирусов, бактерий, грибов, растений, животных и человека).
  • 3. Анализ механизмов и закономерностей передачи наследственной информации от одного поколения клеток и организмов к другому.
  • 4. Выявление механизмов и закономерностей реализации наследственной информации в конкретные признаки и свойства организма в процессе онтогенеза.
  • 5. Изучение причин и механизмов изменения генетической информации на разных этапах развития организма под влиянием факторов внешней среды.
  • 6. Выбор оптимальной системы скрещивания в селекционной работе и наиболее эффективного метода отбора, управления развитием наследственных признаков, использование мутагенеза в селекции.
  • 7. Разработка мероприятий по защите наследственности человека от мутагенного действия факторов окружающей среды.
  • 8. Разрабатывать способы исправления поврежденной генетической информации.

Для решения вышеозначенных задач разработаны методы, позволяющие проводить исследования на разных уровнях организации.

Гибридологический метод : позволяет получить разностороннюю количественную характеристику закономерностей наследования, особенностей взаимодействия генов, механизмов и закономерностей наследственной и ненаследственной изменчивости.

Цитологические методы: изучают на клеточном уровне зависимость проявления признаков от поведения хромосом, изменчивости - от состояния хромосомного аппарата и другие аналогичные проблемы.

Биохимические методы : позволяют определить локализацию генов, контролирующих синтез специфических белков, выяснить механизмы регуляции активности генов и реализации наследственной информации на молекулярном уровне.

Популяционно-статистический метод : изучает механизмы наследственности и изменчивости на уровне сообществ и групп особей, генетическую структуру популяций и характер распределения в них генных частот, определяет факторы, влияющие на эти процессы.

Клинико-генеалогический метод : на основе родословных изучает передачу конкретного признака в ряду поколений.

Близнецовый метод : определяет роль генотипа и среды в проявлении признака.

Цитологический метод : исследует кариотип.

Методы генетики соматических клеток : изучают вопросы генетики человека в эксперименте.

Методы моделирования : изучают некоторые вопросы генетики, в частности генетики человека, с использованием мутантных линий животных, имеющих сходные нарушения, или математических моделей.

Экспресс-методы изучения генетики человека : микробиологический ингибиторный тест Гатри; биохимические и микробиологические методы; выявление Х- и У-хроматина; дерматоглифический метод.

Методы пренатальной диагностики наследственных болезней : определение альфа-фетопротеина (АФП); ультрасонографии (эхографии); хорионбиопсии; амниоцентеза; фетоскопии.

Значение генетики:

  • 1. Знание генетических механизмов и закономерностей формирования физической и психической сферы ребенка, правильная оценка роли наследственности и внешних факторов, в том числе воспитания, в процессе становления его характера необходимы специалистам педагогического профиля.
  • 2. Достижения генетики используются в изучении проблем иммунитета и трансплантации органов и тканей, в онкологии, при гигиенической оценке окружающей среды, определении устойчивости микроорганизмов к лекарственным препаратам, для получения гормонов, ферментов, лекарств, лечения наследственных болезней и т. д.
  • 3. Знание генетики необходимо врачу любой специальности и биологам всех профилей для понимания сущности жизни, механизмов индивидуального развития и его нарушений, природы любого заболевания, рационального подхода к диагностике, лечению и профилактике болезней.
  • 4. Использование законов наследственности и изменчивости лежит в основе создания новых высокопродуктивных пород домашних животных и сортов растений.
  • 5. Знание генетики необходимо для селекции микроорганизмов, продуцирующих антибиотики.
  • 6. Применение генной инженерии позволяет получать нужные человеку биологически активные вещества путем биологического синтеза в промышленных условиях (антибиотики, инсулин, интерферон и др.).

Генетика - это наука, изучающая закономерности передачи признаков от родительских особей к потомкам. Эта дисциплина также рассматривает их свойства и способность к изменчивости. При этом в качестве носителей информации выступают особые структуры - гены. В настоящее время наука накопила достаточно информации. Она имеет несколько разделов, каждый из которых обладает своими задачами и объектами исследований. Наиболее важные из разделов: классическая, молекулярная, и

Классическая генетика

Классическая генетика - это наука о наследственности. Это свойство всех организмов передавать во время размножения свои внешние и внутренние признаки потомству. Классическая генетика также занимается изучением изменчивости. Она выражается в нестабильности признаков. Эти изменения накапливаются из поколения в поколение. Только благодаря такому непостоянству организмы могут приспособиться к изменениям в окружающей их среде.

Наследственная информация организмов заключена в генах. В настоящее время их рассматривают с точки зрения молекулярной генетики. Хотя возникли эти понятия еще задолго до появления этого раздела.

Термины «мутация», «ДНК», «хромосомы», «изменчивость» стали известными в процессе многочисленных исследований. Сейчас результаты многовековых опытов кажутся очевидными, но когда-то все начиналось со случайных скрещиваний. Люди стремились получить коров с большими удоями молока, более крупных свиней и овец с густой шерстью. Это были первые, даже не научные, опыты. Однако именно эти предпосылки привели к возникновению такой науки, как классическая генетика. Вплоть до 20-го века скрещивание было единственным известным и доступным методом исследования. Именно результаты классической генетики стали значительным достижением современной науки биологии.

Молекулярная генетика

Это раздел, изучающий все закономерности, которые подчинены процессам на молекулярном уровне. Самое важное свойство всех живых организмов - это наследственность, то есть они способны из поколения в поколение сохранять основные черты строения своего организма, а также схемы протекания обменных процессов и ответов на воздействие различных факторов окружающей среды. Это происходит благодаря тому, что на молекулярном уровне особые вещества записывают и сохраняют всю полученную информацию, а затем передают ее следующим поколениям во время процесса оплодотворения. Открытие этих веществ и последующее их изучение стало возможным благодаря исследованию строения клетки на химическом уровне. Так были открыты нуклеиновые кислоты - основа генетического материала.

Открытие «наследственных молекул»

Современная генетика знает практически все о нуклеиновых кислотах, но, конечно же, так было не всегда. Первое предположение о том, что химические вещества могут быть как-то связаны с наследственностью, было выдвинуто лишь в 19-м веке. Изучением этой проблемы на тот момент занимались биохимик Ф. Мишер и братья-биологи Гертвиги. В 1928 году отечественный ученый Н. К. Кольцов, опираясь на результаты исследований, предположил, что все наследственные свойства живых организмов закодированы и размещены в гигантских «наследственных молекулах». При этом он заявил, что эти молекулы состоят из упорядоченных звеньев, которые, собственно, и являются генами. Это определенно было прорывом. Также Кольцов определил, что данные «наследственные молекулы» упакованы в клетках в особые структуры, названные хромосомами. Впоследствии эта гипотеза нашла свое подтверждение и дала толчок развитию науки в 20-м веке.

Развитие науки в 20-м веке

Развитие генетики и дальнейшие исследования привели к ряду не менее важных открытий. Было установлено, что каждая хромосома в клетке содержит всего одну огромную молекулу ДНК, состоящую из двух нитей. Ее многочисленные отрезки - это гены. Основная их функция заключается в том, что они особым образом кодируют информацию о строении белков-ферментов. Но реализация наследственной информации в определенные признаки протекает при участии другого типа нуклеиновой кислоты - РНК. Она синтезируется на ДНК и снимает копии с генов. Она же переносит информацию на рибосомы, где и происходит синтез ферментных белков. было выяснено в 1953 г., а РНК - в период с 1961 по 1964 год.

С этого времени молекулярная генетика стала развиваться семимильными шагами. Эти открытия стали основой исследований, в результате которых были раскрыты закономерности развертывания наследственной информации. Этот процесс осуществляется на молекулярном уровне в клетках. Также были получены принципиально новые сведения о хранении информации в генах. Со временем было установлено, как происходят механизмы удвоения ДНК перед (репликация), процессы считывания информации молекулой РНК (транскрипция), синтез белков-ферментов (трансляция). Также были обнаружены принципы изменения наследственности и выяснена их роль во внутренней и внешней среде клеток.

Расшифровка структуры ДНК

Методы генетики интенсивно развивались. Важнейшим достижением стала расшифровка хромосомной ДНК. Выяснилось, что существует всего два типа участков цепи. Они отличаются друг от друга расположенностью нуклеотидов. У первого типа каждый участок своеобразен, то есть ему присуща уникальность. Второй же содержал разное количество регулярно повторяющихся последовательностей. Они были названы повторами. В 1973 году был установлен тот факт, что уникальные зоны всегда прерываются определенными генами. Отрезок всегда заканчивается повтором. Этот промежуток кодирует определенные ферментативные белки, именно по ним «ориентируется» РНК при считывании информации с ДНК.

Первые открытия в генной инженерии

Появляющиеся новые методы генетики повлекли за собой дальнейшие открытия. Было выявлено уникальное свойство всей живой материи. Речь идет о способности восстанавливать поврежденные участки в цепи ДНК. Они могут возникать в результате различных негативных воздействий. Способность к самовосстановлению была названа «процессом генетической репарации». В настоящее время многие именитые ученые высказывают достаточно подкрепленные фактами надежды на возможность «выхватывать» определенные гены из клетки. Что это может дать? В первую очередь возможность устранять генетические дефекты. Изучением таких проблем занимается генетическая инженерия.

Процесс репликации

Молекулярная генетика изучает процессы передачи наследственной информации при размножении. Сохранение неизменности записи, кодируемой в генах, обеспечивается точным ее воспроизведением во время деления клеток. Весь механизм данного процесса изучен в деталях. Оказалось, что непосредственно перед тем, как происходит деление в клетке, осуществляется репликация. Это процесс удвоения ДНК. Он сопровождается абсолютно точным копированием первоначальных молекул по правилу комплементарности. Известно, что в составе нити ДНК всего четыре типа нуклеотидов. Это гуанин, аденин, цитозин и тимин. Согласно правилу комплементарности, открытому учеными Ф. Криком и Д. Уотсоном в 1953 году, в структуре двойной цепи ДНК аденину соответствует тимин, а цитидиловому нуклеотиду - гуаниловый. Во время процесса репликации происходит точное копирование каждой цепи ДНК путем подстановки нужного нуклеотида.

Генетика - наука сравнительно молодая. Процесс репликации был изучен лишь в 50-х годах 20-го века. Тогда же был обнаружен фермент ДНК-полимераза. В 70-е годы, после многолетних исследований, было установлено, что репликация - процесс многостадийный. В синтезе молекул ДНК принимают непосредственное участие несколько различных видов ДНК-полимераз.

Генетика и здоровье

Все сведения, связанные с точечным воспроизведением наследственной информации во время процессов широко применяются в современной медицинской практике. Досконально изученные закономерности свойственны как здоровым организмам, так и в случаях патологических изменений в них. Например, доказано и подтверждено опытами, что излечение некоторых болезней может быть достигнуто при влиянии извне на процессы репликации генетического материала и деления Особенно если патология функционирования организма связана с процессами метаболизма. Например, такие заболевания, как рахит и нарушение фосфорного обмена, напрямую вызваны угнетением репликации ДНК. Как же можно изменить такое состояние извне? Уже синтезированы и опробованы лекарственные препараты, стимулирующие угнетенные процессы. Они активизируют репликацию ДНК. Это способствует нормализации и восстановлению патологических состояний, связанных с заболеванием. Но генетические исследования не стоят на месте. С каждым годом получают все больше данных, помогающих не просто излечить, а предотвратить возможную болезнь.

Генетика и лекарственные препараты

Очень многими вопросами здоровья занимается молекулярная генетика. Биология некоторых вирусов и микроорганизмов такова, что их деятельность в организме человека порой приводит к сбою репликации ДНК. Также уже установлено, что причиной некоторых заболеваний является не угнетение этого процесса, а чрезмерная его активность. Прежде всего, это вирусные и бактериальные инфекции. Они обусловлены тем, что в пораженных клетках и тканях начинают ускоренными темпами размножаться патогенные микробы. Также к данной патологии относятся онкологические заболевания.

В настоящее время существует целый ряд лекарственных средств, которые способны подавить репликацию ДНК в клетке. Большую часть из них синтезировали советские ученые. Эти лекарства широко применяются в медицинской практике. К ним относится, например, группа противотуберкулезных препаратов. Существуют и антибиотики, подавляющие процессы репликации и деления патологических и микробных клеток. Они помогают организму быстро справиться с чужеродными агентами, не давая им размножаться. Такие лекарственные препараты обеспечивают отличный лечебный эффект при большинстве серьезных острых инфекций. А особенно широкое применение данные средства нашли при лечении опухолей и новообразований. Это приоритетное направление, которое выбрал институт генетики России. Каждый год появляются новые улучшенные препараты, препятствующие развитию онкологии. Это дает надежду десяткам тысяч больных людей по всему миру.

Процессы транскрипции и трансляции

После того как были проведены опытные лабораторные тесты по генетике и получены результаты о роли ДНК и генов как матриц для синтеза белков, некоторое время ученные высказывали мнение, что аминокислоты собираются в более сложные молекулы тут же, в ядре. Но после получения новых данных стало ясно, что это не так. Аминокислоты не строятся на участках генов в ДНК. Было установлено, что этот сложный процесс протекает в несколько этапов. Сначала с генов снимаются точные копии - информационные РНК. Эти молекулы выходят из ядра клетки и передвигаются к особым структурам - рибосомам. Именно на этих органеллах и происходят сборка аминокислот и синтез белков. Процесс получения копий ДНК получил название «транскрипция». А синтез белков под контролем информационной РНК - «трансляция». Изучение точных механизмов этих процессов и принципов влияния на них - главные современные задачи по генетике молекулярных структур.

Значение механизмов транскрипции и трансляции в медицине

В последние годы стало очевидным, что скрупулезное рассмотрение всех этапов транскрипции и трансляции имеет большое значение для современного здравоохранения. Институт генетики РАН уже давно подтвердил тот факт, что при развитии практически любого заболевания отмечается интенсивный синтез токсических и просто вредных для организма человека белков. Этот процесс может протекать под контролем генов, которые в нормальном состоянии неактивны. Либо это введенный синтез, за который ответственны проникшие в клетки и ткани человека патогенные бактерии и вирусы. Также образование вредных белков могут стимулировать активно развивающиеся онкологические новообразования. Именно поэтому доскональное изучение всех этапов транскрипции и трансляции в настоящее время исключительно важно. Так можно выявить способы борьбы не только с опасными инфекциями, но и с раком.

Современная генетика - это непрерывные поиски механизмов развития заболеваний и лекарственных препаратов для их лечения. Сейчас уже возможно ингибировать процессы трансляции в пораженных органах или организме в целом, тем самым подавить воспаление. В принципе, именно на этом и построено действие большинства известных антибиотиков, например, тетрациклинового или стрептомицинового ряда. Все эти лекарственные препараты выборочно ингибируют в клетках процессы трансляции.

Значение исследования процессов генетической рекомбинации

Очень большое значение для медицины имеет также детальное изучение процессов генетической рекомбинации, которая отвечает за передачу и обмен участков хромосом и отдельных генов. Это важный фактор в развитии инфекционных заболеваний. Генетическая рекомбинация лежит в основе проникновения в клетки человека и внедрения в ДНК чужеродного, чаще вирусного, материала. В результате происходит синтез на рибосомах не «родных» организму белков, а патогенных для него. По этому принципу происходит репродукция в клетках целых колоний вирусов. Методы направлены на разработку средств борьбы с инфекционными заболеваниями и для предотвращения сборки патогенных вирусов. Кроме того, накопление информации о генетической рекомбинации позволило понять принцип обмена генов между организмами, что привело к появлению геномодифицированных растений и животных.

Значение молекулярной генетики для биологии и медицины

За последнее столетие открытия сначала в классической, а потом уже в молекулярной генетике оказали огромное, и даже решающее влияние на прогресс всех биологических наук. Особенно сильно шагнула вперед медицина. Успехи генетических исследований позволили понять некогда непостижимые процессы наследования генетических признаков и развития индивидуальных особенностей человека. Примечательно и то, как быстро эта наука из чисто теоретической переросла в практическую. Она стала важнейшей для современной медицины. Детальное изучение молекулярно-генетических закономерностей послужило базой для понимания процессов, происходящих в организме как больного, так и здорового человека. Именно генетика дала толчок развитию таких наук, как вирусология, микробиология, эндокринология, фармакология и иммунология.

от греч. genesis - происхождение) - учение о развитии; генетический - относящийся к возникновению и развитию, рассматриваемый с точки зрения развития, эволюционно-исторический (напр., генетическая психология).

Отличное определение

Неполное определение ↓

ГЕНЕТИКА

обычно определяется как наука, изучающая закономерности процессов наследственности и изменчивости живых организмов. Формальным годом рождения генетики считается 1900 г., хотя основы ее фактически были сформулированы еще в XIX в. австрийским монахом и ученым Г. Менделем (1822- 1884). Именно Мендель на основе своих классических опытов по растительным гибридам уже в работе 1865 г. сформулировал основные идеи всей классической генетики XX в.: материальность и дискретность наследственности (существование особых единиц, факторов наследственности) и случайно-комбинаторный механизм их передачи по поколениям живых организмов. В силу центральной роли генетических структур в осуществлении практически всех важнейших процессов жизнедеятельности, генетика в XX в. заняла особое - стержневое - место во всей системе биологического знания о живой природе, включая и человека как ее части. Начавшись в 1900 г. с переоткрытия законов Менделя, генетика в XX в. прошла стремительный путь развития от формальной идентификации генов (так были в начале века названы менделевскис «факторы» наследственности) с определенными участками ядерных хромосом до выяснения их подлинной химической природы (1944) в форме особого класса химических биополимеров - дезоксирибонуклеиновых кислот (ДНК); от раскрытия структуры ДНК в виде знаменитой теперь и известной всем двойной спирали (1953) до расшифровки кода наследственной информации (1961); и от открытия методов быстрого прочтения, определения (или, как говорят ученые, - секвенирования) длинных нуклеотидных последовательностей ДНК (1977) до расшифровки (точнее, - секвенирования) генома человека (2000).



Похожие статьи
 
Категории