Логические методы и математическая логика. История развития математической логики

23.09.2019

Введение

Учебные вопросы:

          Понятия и определения математической логики.

          Основные операции алгебры высказываний.

          Законы и следствия булевой алгебры.

Заключение

Введение

Теоретической основой построения ЭВМ служат специальные математические дисциплины. Одной из них является алгебра логики, или булева алгебра (Дж. Буль - английский математик XIX в., основоположник этой дисциплины). Ее аппарат широко используют для описания схем ЭВМ, их проектирования и оптимизации.

1. Понятия и определения математической логики.

Логика - наука, изучающая законы и формы мышления; учение о способах рассуждений и доказательств.

Математическая логика (теоретическая логика, символическая логика) - раздел математики, изучающий доказательства и вопросы оснований математики. «Предмет современной математической логики разнообразен». Согласно определению П. С. Порецкого, «математическая логика есть логика по предмету, математика по методу». Согласно определению Н. И. Кондакова, «математическая логика - вторая, после традиционной логики, ступень в развитии формальной логики, применяющая математические методы и специальный аппарат символов и исследующая мышление с помощью исчислений (формализованных языков)». Это определение соответствует определению С. К. Клини: математическая логика - это «логика, развиваемая с помощью математических методов». Также А. А. Марков определяет современную логику «точной наукой, применяющей математические методы». Все эти определения не противоречат, а дополняют друг друга.

Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном языке. Такие точные языки имеют две стороны: синтаксис и семантику. Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие - нет.

Математическая логика изучает логические связи и отношения, лежащие в основе логического (дедуктивного) вывода , с использованием языка математики.

Законы мира, сущность предметов, общее в них мы познаем посредством абстрактного мышления. Основными формами абстрактного мышления являются понятия, суждения и умозаключения.

Понятие - форма мышления, в которой отражаются существенные признаки отдельного предмета или класса однородных предметов. Понятия в языке выражаются словами.

Объем понятия - множество предметов, каждому из которых принадлежат признаки, составляющие содержание понятия. Выделяют понятия общие и единичные.

Выделяют следующие отношения понятий по объему:

    тождество или совпадение объемов, означающее, что объем одного понятия равен объему другого понятия;

    подчинение или включение объемов: объем одного из понятий полностью включен в объем другого;

    исключение объемов - случай, в котором нет ни одного признака, который бы находился в двух объемах;

    пересечение или частичное совпадение объемов;

    соподчинение объемов - случай, когда объемы двух понятий, исключающие друг друга, входят в объем третьего.

Суждение - это форма мышления, в которой что-либо утверждается или отрицается о предметах, признаках или их отношениях.

Умозаключение - форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, мы по определенным правилам вывода получаем суждение-заключение.

Алгебра в широком смысле этого слова наука об общих операциях, аналогичных сложению и умножению, которые могут выполняться не только над числами, но и над другими математическими объектами.

Алгебра логики (алгебра высказываний, булева алгебра 1 ) - раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается (т. н. бинарная или двоичная логика, в отличие от, например, троичной логики), что высказывания могут быть только истинными или ложными.

Примеры алгебр: алгебра натуральных чисел, алгебра рациональных чисел, алгебра многочленов, алгебра векторов, алгебра матриц, алгебра множеств и т.д. Объектами алгебры логики или булевой алгебры являются высказывания.

Высказывание - это любое предложение какого-либо языка (утверждение), содержание которого можно определить как истинное или ложное.

Всякое высказывание или истинно , или ложно ; быть одновременно и тем и другим оно не может.

В естественном языке высказывания выражаются повествовательными предложениями. Восклицательные и вопросительные предложения высказываниями не являются.

Высказывания могут выражаться с помощью математических, физических, химических и прочих знаков. Из двух числовых выражений можно составить высказывания, соединив их знаками равенства или неравенства.

Высказывание называется простым (элементарным), если никакая его часть сама не является высказыванием.

Высказывание, состоящее из простых высказываний, называются составным (сложным).

Простые высказывания в алгебре логики обозначаются заглавными латинскими буквами:

А = {Аристотель - основоположник логики},

В = {На яблонях растут бананы}.

Обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания: «Сумма углов треугольника равна 180 градусов» устанавливается геометрией, причем - в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского - ложным.

Истинному высказыванию ставится в соответствие 1, ложному - 0. Таким образом, А = 1, В = 0.

Алгебра логики отвлекается от смысловой содержательности высказываний. Ее интересует только один факт - истинно или ложно данное высказывание, что дает возможность определять истинность или ложность составных высказываний алгебраическими методами.

Введение

Тема контрольной работы «Математическая логика».

БУЛЬ или БУЛ, а также БУУЛ, Джордж (1815-1864) – английский математик, который считается основоположником математической логики.

Математическая логика – это раздел математики, посвященный анализу методов рассуждений, при этом в первую очередь исследуются формы рассуждений, а не их содержание, т.е. исследуется формализация рассуждений.

Формализация рассуждений восходит к Аристотелю. Современный вид аристотелева (формальная) логика приобрела во второй половине XIX века в сочинении Джорджа Буля “Законы мысли”.

Интенсивно математическая логика начала развиваться в 50-е годы XX века в связи с бурным развитием цифровой техники.

1. Элементы математической логика

Основными разделами математической логики являются исчисление высказываний и исчисление предикатов.

Высказывание – есть предложение, которое может быть либо истинно, либо ложно.

Исчисление высказываний – вступительный раздел математической логики, в котором рассматриваются логические операции над высказываниями.

Предикат – логическая функция от п переменных, которая принимает значения истинности или ложности.

Исчисление предикатов – раздел математической логики, объектом которого является дальнейшее изучение и обобщение исчисления высказываний.

Теория булевых алгебр (булевых функций) положена в основу точных методов анализа и синтеза в теории переключательных схем при проектировании компьютерных систем.

1.1 Основные понятия алгебры логики

Алгебра логики – раздел математической логики, изучающий логические операции над высказываниями.

В алгебре логики интересуются лишь истинностным значением высказываний. Истинностные значения принято обозначать:

1 (истина) 0 (ложь).

Каждой логической операции соответствует функция, принимающая значения 1 или 0, аргументы которой также принимают значения 1 или 0.

Такие функции называются логическими или булевыми, или функциями алгебры логики (ФАЛ). При этом логическая (булева) переменная x может принимать только два значения:

.

Таким образом,

- логическая функция, у которой логи-ческие переменные являются высказываниями. Тогда сама логическая функция является сложным высказыванием.

В этом случае алгебру логики можно определить, как совокупность множества логических функций с заданными в нем всевозможными логическими операциями. Таким логическим операциям, как конъюнкция (читается И) , дизъюнкция (ИЛИ ), импликация, эквивалентность, отрицание (НЕ) , соответствуют логические функции, для которых приняты обозначения

(&, ·), ~, – (), и имеет место таблица истинности:
x~y
0 0 0 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 0 0
1 1 1 1 1 0 1

Это табличный способ задания ФАЛ. Наряду с ними применяется задание функций с помощью формул в языке, содержащем переменные x , y , …, z (возможно индексированные) и символы некоторых конкретных функций – аналитический способ задания ФАЛ.

Наиболее употребительным является язык,содержащий логические символы

~, –. Формулы этого языка определяются следующим образом:

1) все переменные есть формулы;

2) если P и Q – формулы, то

P ~ Q , - фор-мулы.

Например, выражение

~ - формула. Если переменным x , y , z придать значения из двоичного набора 0, 1 и провести вычисления в соответствии с операциями, указанными в формуле, то получим значение 0 или 1.

Говорят, что формула реализует функцию. Так формула

~ реализует функцию h (x , y , z ):
x y z h (x, y, z )
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Пусть P и Q – формулы, которые реализуют функции f (x 1 , x 2 , …, x n ) и g (x 1 , x 2 , …, x n ). Формулы равны: P = Q , если функции f и g совпадают, т.е. совпадают их таблицы истинности. Алгебра, основным множеством которой является все множество логических функций, а операциями – дизъюнкция, конъюнкция и отрицание, называется булевой алгеброй логических функций.

Приведем законы и тождества, определяющие операции

– и их связь с операциями , ~:

1. Идемпотентность конъюнкции и дизъюнкции:

.

2. Коммутативность конъюнкции и дизъюнкции:

.

3. Ассоциативность конъюнкции и дизъюнкции:

.

4. Дистрибутивность конъюнкции относительно дизъюнкции и дизъюнкции относительно конъюнкции:


.

5. Двойное отрицание:

.

6. Законы де Моргана:

=, =.

7. Склеивание:

.

8. Поглощение

.

9. Действия с константами 0 и 1.

Основная идея математической логики - формализация знаний и рассуждений. Известно, что наиболее легко формализуемые знания - математические. Таким образом, математическая логика, по-существу, - наука о математике, или метаматематика. Центральным понятием математической логики является ``математическое доказательство"". Действительно, ``доказательные"" (иначе говоря, дедуктивные) рассуждения - единственный вид признаваемых в математике рассуждений. Рассуждения в математической логике изучаются с точки зрения формы, а не смысла. По-существу, рассуждения моделируются чисто ``механическим"" процессом переписывания текста (формул). Такой процесс называют выводом. Говорят еще, что математическая логика оперирует только синтаксическими понятиями. Однако обычно всё же важно, как соотносятся рассуждения с действительностью (или нашими представлениями). Поэтому, надо всё же иметь в виду некоторый смысл формул и вывода. При этом используют термин семантика (синоном слова ``смысл"") и чётко разделяют синтаксис и семантику. Когда же действительно интересуются только синтаксисом, часто используют термин ``формальная система"". Мы будем использовать синоним этого термина - ``исчисление"" (используются ещё термины ``формальная теория"" и ``аксиоматика""). Объектом формальных систем являются строки текста (последовательности символов), с помощью которых записываются формулы.

Формальная система определена, если:

Задан алфавит (множество символов, используемых для построения формул).

Выделено множество формул, называемых аксиомами. Это - стартовые точки в выводах.

Задано множество правил вывода, которые позволяют из некоторой формулы (или множества формул) получать новую формулу.

Основные принципы операций

Отрицание

Отрицание логического высказывания -- логическое высказывание, принимающее значение "истинно", если исходное высказывание ложно, и наоборот. Это специальная логическая операция. В зависимости от местоположения различают внешнее и внутреннее отрицание, свойства и роли которых существенно различаются.

1. Внешнее отрицание (пропозициональное) служит для образования сложного высказывания из другого (не обязательно простого) высказывания. В нем утверждается отсутствие положения дел, описываемого в отрицаемом высказывании. Традиционно отрицательное высказывание считается истинным, если, и только если, отрицаемое высказывание ложно. В естественном языке отрицание обычно выражается оборотом «неверно, что», за которым следует отрицаемое высказывание.

В языках формальных теорий отрицание называется особая унарная пропозициональная связка, используемая для образования из одной формулы другой, более сложной. Для обозначений отрицание обычно используются символы «отрицание», «-» или «-- 1». В классической логике высказываний формула -А истинна тогда и только тогда, когда формула А ложна.

Однако в неклассической логике отрицание может не обладать всеми свойствами классического отрицания. В этой связи возникает вполне закономерный вопрос о минимальном наборе свойств, которому должна удовлетворять некоторая унарная операция, чтобы ее можно было считать отрицанием, а также о принципах классификации различных отрицаниях в неклассических формальных теориях (см.: Dunn J.M. and Hardegree G.M.Algebraic Methods in Philosophical Logic. Oxford, 2001).

Фактически указанное выше традиционное понимание внешнего (пропозиционального) отрицания может быть выражено через систему следующих требований: (I) Если А -- истинно (ложно), то не-А -- ложно (истинно); (II) Если не-А -- истинно (ложно), то А -- ложно (истинно). Формально требования (I) и (II) могут быть выражены через условие (1) А р--iB=>B (= --, А, называемое «конструктивная контрапозиция». Отрицание, удовлетворяющее условию (1), принято называть минимальным отрицанием. Однако оказывается, что условие (1) можно разложить на два более слабых условия: (2) А (= В=>-,В р-Аи(3)А(= -- 1 -- А, известных, соответственно, как «контрапозиция» и «введение двойного отрицания». В результате появляется возможность выявить подминимальное отрицание, удовлетворяющее условию (2), но не удовлетворяющее условию (3). Естественно сформулировать условие, обратное (3) и формализующее принцип «снятие двойного отрицания»: (4) --. - А = А. Минимальное отрицание (т.е. удовлетворяющее условию (1) или условиям (2) и (3) вместе), для которого выполняется условие (4), называется отрицание де Моргана. Минимальное отрицание, удовлетворяющее дополнительному свойству (5): Если А -- * В, то для любого С верно, что А р С («свойство абсурдности»), -- называется интуиционистским отрицанием. Можно сформулировать принцип (6), двойственный принципу абсурдности: Если В |=Аи--S р А, то для любого С верно, что С р А. Удовлетворяющее этому принципу отрицания. представляет собой разновидность отрицания в паранепротиворечивой логике. Наконец, отрицание де Моргана (свойства (2), (3), (4)), для которого выполняется (5) или (6), называется орто-отрицание Если в соответствующем исчислении принимается аксиома дистрибутивности для конъюнкции и дизъюнкции, то орто-отрицание называется отрицание Буля, или классическим отрицанием.

2. Внутреннее отрицание входит в состав простого высказывания. Различают отрицание в составе связки (отрицательная связка) и терминное отрицание.

Отрицание в составе связки выражается с помощью частицы «не», стоящей перед глаголом-связкой (если он имеется) или перед смысловым глаголом. Оно служит для выражения суждений об отсутствии каких-то отношений («Иван не знает Петра»), или для образования отрицательной предицирующей связки в составе категорических атрибутивных суждений.

Терминное отрицание используется для образования негативных терминов. Оно выражается через приставку «не» или близкие ей по смыслу («Все неспелые яблоки -- зеленые»).

Конъюнкция

Конъюнкция двух логических высказываний -- логическое высказывание, истинное только тогда, когда они одновременно истинны (от лат. conjunctio -- союз, связь), в широком смысле -- сложное высказывание, образованное с помощью союза «и». В принципе можно говорить о конъюнкции бесконечного числа высказываний (например, о конъюнкции всех истинных предложений математики). В логике конъюнкцией называют логическую связку (операцию, функцию; обозначают: &,); образованное с её помощью сложное высказывание истинно только при условии одинаковой истинности его составляющих. В классической логике высказываний конъюнкция вместе с отрицанием составляют функционально-полную систему пропозициональных связок. Это означает, что через них можно определить любую другую пропозициональную связку. Одним из свойств конъюнкции является коммутативность (т. е. эквивалентность А & В и В & А). Однако, иногда, говорят о некоммутативной, т. е. упорядоченной конъюнкции (примером высказывания с такой конъюнкции может служить: «Ямщик свистнул, и лошади поскакали»).

Дизъюнкция

Дизъюнкция двух логических высказываний -- логическое высказывание, истинное только тогда, когда хотя бы одно из них истинно

(от лат. disjunctio -- разобщение, обособление), в широком смысле -- сложное высказывание, образованное из двух или более предложений с помощью союза «или», выражающего альтернативность, или выбор.

В символической логике дизъюнкцией называют логическую связку (операцию, функцию), образующую из предложений А и В сложное высказывание, обозначаемое обычно как А V В, которое является истинным при истинности по крайней мере одного из двух дизъюнктивных членов: А или В.

В классической логике дизъюнкция вместе с отрицанием образует функционально-полную систему пропозициональных связок, что позволяет определить через них другие пропозициональные связки.

Традиционно принято отличать рассмотренную (нестрогую) дизъюнкцию от строгой (разделительной) дизъюнкции, для которой характерно то, что соответствующее высказывание истинно при условии, когда истинен один и только один дизъюнктивный член.

Импликация

Импликация двух логических высказываний A и B -- логическое высказывание, ложное только тогда, когда B ложно, а A истинно (от лат. implicatio -- сплетение, от implico -- тесно связываю) -- логическая связка, соответствующая грамматической конструкции «если.., то...», с помощью которой из двух простых высказываний образуется сложное высказывание. В импликативном высказывании различают антецедент (основание) -- высказывание, идущее после слова «если», и консеквент (следствие) -- высказывание, идущее за словом «то». Импликативное высказывание представляет в языке логики условное высказывание обычного языка. Последнее играет особую роль, как в повседневных, так и в научных рассуждениях, основной его функцией является обоснование одного путем ссылки на нечто другое.

Выражаемую условным высказыванием связь обосновывающего и обосновываемого трудно охарактеризовать в общем виде, и только иногда природа ее относительно ясна. Эта связь может быть, в частности, связью логического следования, имеющей место между посылками и заключением правильного умозаключения («Если все живые многоклеточные существа смертны и медуза является таким существом, то она смертна»). Связь может представлять собой закон природы («Если тело подвергнуть трению, оно начнет нагреваться») или причинную связь («Если Луна в новолуние находится в узле своей орбиты, наступает солнечное затмение»). Рассматриваемая связь может иметь также характер социальной закономерности, правила, традиции и т.п. («Если меняется экономика, меняется и политика», «Если обещание дано, оно должно быть выполнено»).

Связь, выражаемая условным высказыванием, предполагает, что консеквент с определенной необходимостью «вытекает» из антецедента и что есть некоторый общий закон, сумев сформулировать который, мы можем логически вывести консеквент из антецедента. Например, условное высказывание «Если висмут-- металл, он пластичен» предполагает общий закон «Все металлы пластичны», делающий консеквент данного высказывания логическим следствием его антецедента.

И в обычном языке, и в языке науки условное высказывание, кроме функции обоснования, может выполнять также целый ряд других задач. Оно может формулировать условие, не связанное с к.-л. подразумеваемым общим законом или правилом («Если захочу, разрежу свой плащ»), фиксировать какую-то последовательность («Если прошлое лето было сухим, то в этом году оно дождливое»), выражать в своеобразной форме неверие («Если вы решите задачу, я докажу великую теорему Ферма»), противопоставление («Если в огороде растет капуста, то в саду растет яблоня») и т.п. Многочисленность и разнородность функций условного высказывания существенно затрудняет его анализ.

В логических системах абстрагируются от особенностей обычного употребления условного высказывания, что ведет к различным импликациям. Наиболее известны из них импликация материальная, строгая импликация и релевантная (уместная) импликация.

Материальная импликация -- одна из основных связок классической логики. Определяется она таким образом: импликация ложна только в случае истинности антецедента и ложности консеквента и истинна во всех остальных случаях. Условное высказывание «Если А, то В» предполагает некоторую реальную связь между тем, о чем говорится в А и В; выражение «А материально имплицирует В» такой связи не предполагает.

Строгая импликация определяется через модальное понятие (логической) невозможности: «А строго имплицирует В» означает «Невозможно, чтобы А было истинно, а В ложно».

В релевантной логике импликация понимается как условный союз в его обычном смысле. В случае релевантной импликация нельзя сказать, что истинное высказывание может быть обосновано путем ссылки на любое высказывание и что с помощью ложного высказывания можно обосновать какое угодно высказывание.

Эквивалентность

Эквивалентность двух логических высказываний -- логическое высказывание, истинное только тогда, когда они одновременно истинны или ложны (от позднелат. equivalens - равноценный) - родовое наименование всевозможных отношений типа равенства, т.е. рефлексивных, симметричных и транзитивных бинарных отношений. Примеры: эквиполентность (совпадение по смыслу, значению, содержанию, выразительным и (или) дедуктивным возможностям между понятиями, концепциями, науч. теориями или формализующими их формальными системами) конгруентность или подобие геометрия, фигур; изоморфизм; равномощность множеств и другие эквивалентность каких-либо объектов означает их равенство (тождество) в каком-либо отношении

(например, изоморфные множества неразличимы по своей "структуре", если под "структурой" понимать совокупность тех их свойств, относительно которых эти множества изоморфны). Всякое отношение эквивалентности порождает разбиение множества, на котором оно определено, на попарно не пересекающиеся "классы эквивалентности " в один класс относят при этом эквивалентные друг другу элементы данного множества.

Рассмотрение классов эквивалентности в качестве новых объектов представляет собой один из основных способов порождения (введения) абстрактных понятий в логико-математических (и вообще естественно-научных) теориях. Так, считая эквивалентными дроби a/b и c/d с целыми числителями и знаменателями, если ad=bc, вводят в рассмотрение рациональные числа как классы эквивалентных дробей; считая эквивалентными множества, между которыми можно установить взаимно-однозначное соответствие, вводят понятие мощности (кардинального числа) множества (как класс эквивалентных между собой множеств); считая эквивалентными два куска вещества, вступающие в равных условиях в одинаковые химических реакции, приходят к абстрактному понятию химического состава и т.п.

Термин " эквивалентность" употребляют часто не (только) как родовой, а как синоним некоторых из его частных значений ("эквивалентность теорий" вместо "эквивалентность", " эквивалентность множеств" вместо "равномощность", " эквивалентность слов" в абстрактной алгебре вместо "тождество" и т.п.).

Кванторное высказывание

Кванторное с квантором всеобщности.

Кванторное логическое высказывание с квантором всеобщности ("xA(x)) -- логическое высказывание, истинное только тогда, когда для каждого объекта x из заданной совокупности высказывание A(x) истинно.

Кванторное с квантором существования.

Кванторное логическое высказывание с квантором существования ($xA(x)) -- логическое высказывание, истинное только тогда, когда в заданной совокупности существует объект x, такой, что высказывание A(x) истинно.

Структура математической логики

Раздел «математическая логика» состоит из трёх частей: по неформальному аксиоматическому методу, по логике высказываний и по логике предикатов (первого порядка). Аксиоматический метод построения - первый шаг на пути к формализации теории. Большинство задач, рассматриваемых в математической логике, состоит в доказательстве некоторых утверждений. Математическая логика имеет много разветвлений. Она применяет табличное построение логики высказываний, использует специальный язык символов и формулы логики высказываний.

Неформальный аксиоматический метод

Аксиоматический метод, не фиксирующий жестко применяемого языка и тем самым не фиксирующий границы содержательного понимания предмета, но требующий аксиоматического определения всех специальных для данного предмета исследования понятий. Этот термин не имеет общепринятого толкования.

История развития аксиоматического метода характеризуется все возрастающей степенью формализации. Неформальный аксиоматический метод - определенная ступень в этом процессе.

Первоначальное, данное Евклидом, аксиоматическое построение геометрии отличалось дедуктивным характером изложения, при котором в основу клались определения (пояснения) и аксиомы (очевидные утверждения). Из них, опираясь на здравый смысл и очевидность, выводились следствия. При этом в выводе неявно иногда использовались не зафиксированные в аксиомах предположения геометрия, характера, особенно относящиеся к движению в пространстве и взаимному расположению прямых и точек. Впоследствии были выявлены геометрия, понятия и регламентирующие их употребление аксиомы, неявно используемые Евклидом и его последователями. При этом возникал вопрос: действительно ли выявлены все аксиомы. Руководящий принцип для решения этого вопроса сформулировал Д. Гильберт (D. Hilbert): "Следует добиться того, чтобы с равным успехом можно было говорить вместо точек, прямых и плоскостей о столах, стульях и пивных кружках". Если доказательство не теряет доказательной силы после такой замены, то действительно все используемые в этом доказательстве специальные предположения зафиксированы в аксиомах. Достигаемая при таком подходе степень формализации представляет собой уровень формализации, характерный для неформального аксиоматического метода. Эталоном здесь может служить классический труд Д. Гильберта "Основания геометрии" .

Неформальный аксиоматический метод применяется не только для придания определенной завершенности аксиоматически излагаемой конкретной теории. Он представляет собой действенное орудие математического исследования. Поскольку при изучении системы объектов по этому методу не используется их специфика, или "природа", то доказанные утверждения переносятся на любую систему объектов, удовлетворяющую рассматриваемым аксиомам. Согласно неформальному аксиоматическому методу, аксиомы - это неявные определения первоначальных понятий (а не очевидные истины). Что представляют собой изучаемые объекты - неважно. Все, что нужно о них знать, сформулировано в аксиомах. Предметом изучения аксиоматической теории служит любая ее интерпретация.

Неформальный аксиоматический метод, кроме непременного аксиоматического определения всех специальных понятий, имеет и другую характерную особенность. Это свободное, неконтролируемое аксиомами, основанное на содержательном понимании использование идей и понятий, которые можно применить к любой мыслимой интерпретации, независимо от ее содержания. В частности, широко используются теоретико-множественные и логического понятия и принципы, а также понятия, связанные с идеей счета, и др. Проникновение в аксиоматический метод рассуждений, основанных на содержательном понимании и здравом смысле, а не на аксиомах, объясняется не фиксированностью языка, на котором формулируются и доказываются свойства аксиоматически заданной системы объектов. Фиксирование языка ведет к понятию формальной аксиоматической системы и создает материальную основу для выявления и четкого описания допустимых логических принципов, для контролируемого употребления теоретико-множественных и других общих или не специальных для исследуемой области понятий. Если в языке нет средств (слов) для передачи теоретико-множественных понятий, то этим отсеиваются все доказательства, основанные на использовании таких средств. Если в языке есть средства для выражения некоторых теоретико-множественных понятий, то их применение в доказательствах можно ограничить определенными правилами или аксиомами.

Фиксируя различным образом язык, получают различные теории основного объекта рассмотрения. Например, рассматривая язык узкого исчисления предикатов для теории групп, получают элементарную теорию групп, в которой нельзя сформулировать какого-либо утверждения о подгруппах. Если перейти к языку исчисления предикатов второй ступени, то появляется возможность рассматривать свойства, в которых фигурирует понятие подгруппы. Формализацией неформальный аксиоматический метод в теории групп служит переход к языку системы Цермело - Френкеля с ее аксиоматикой.

Аксиоматический метод

Аксиоматический метод способ построения научной теории, при котором в её основу кладутся некоторые исходные положения (суждения)-- аксиомы, или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логическим путём, посредством доказательств. Построение науки на основе аксиоматический метод обычно называется дедуктивным. Все понятия дедуктивной теории (кроме фиксированного числа первоначальных) вводятся посредством определений, выражающих их через ранее введённые понятия. В той или иной мере дедуктивные доказательства, характерные для аксиоматический метод, применяются во многих науках, однако главная область его приложения -- математика, логика, а также некоторые разделы физики.

Идея аксиоматический метод впервые была высказана в связи с построением геометрии в Древней Греции (Пифагор, Платон, Аристотель, Евклид). Для современной стадии развития аксиоматический метод характерна выдвинутая Гильбертом концепция формального аксиоматический метод, которая ставит задачу точного описания логических средств вывода теорем из аксиом. Основная идея Гильберта -- полная формализация языка науки, при которой её суждения рассматриваются как последовательности знаков (формулы), приобретающие смысл лишь при некоторой конкретной интерпретации. Для вывода теорем из аксиом(и вообще одних формул из других) формулируются спец. правила вывода. Доказательство в такой теории (исчислении, или формальной системе) -- это некоторая последовательность формул, каждая из которых либо есть аксиома, либо получается из предыдущих формул последовательности по какому-либо правилу вывода. В отличие от таких формальных доказательств, свойства самой формальной системы в целом изучаются содержат. средствами метатеории. Основные требования, предъявляемые к аксиоматическим формальным системам,-- непротиворечивость, полнота, независимость аксиом. Гильбертовская программа, предполагавшая возможность доказать непротиворечивость и полноту всей классической математики, в целом оказалась невыполнимой. В 1931 Гёделъ доказал невозможность полной аксиоматизации достаточно развитых научных теорий (напр., арифметики натуральных чисел), что свидетельствовало об ограниченности аксиоматического метода. Основные принципы аксиоматические методы были подвергнуты критике сторонниками интуиционизма и конструктивного направления.

В современном мире мы все чаще используем разнообразные машины и гаджеты. И не только тогда, когда необходимо применить буквально нечеловеческую силу: переместить груз, поднять его на высоту, вырыть длинную и глубокую траншею и т. д. Автомобили сегодня собирают роботы, еду готовят мультиварки, а элементарные арифметические расчеты производят калькуляторы. Все чаще мы слышим выражение «булева алгебра». Пожалуй, пришло время разобраться в роли человека в создании роботов и умении машин решать не только математические, но и

Логика

В переводе с греческого логика - это упорядоченная система мышления, которая создает взаимосвязи между заданными условиями и позволяет делать умозаключения, основываясь на предпосылках и предположениях. Довольно часто мы спрашиваем друг друга: «Логично?» Полученный ответ подтверждает наши предположения либо критикует ход мысли. Но процесс не останавливается: мы продолжаем рассуждать.

Порой количество условий (вводных) настолько велико, а взаимосвязи между ними столь запутанны и сложны, что человеческий мозг не в состоянии «переварить» все сразу. Может понадобиться не один месяц (неделя, год) для понимания происходящего. Но современная жизнь не дает нам таких временных интервалов на принятие решений. И мы прибегаем к помощи компьютеров. И вот тут-то и появляется алгебра логики, со своими законами и свойствами. Загрузив все исходные данные, мы позволяем компьютеру распознать все взаимосвязи, исключить противоречия и найти удовлетворительное решение.

Математика и логика

Известнейший Готфрид Вильгельм Лейбниц сформулировал понятие «математическая логика», задачи которой были доступны для понимания только узкому кругу ученых. Особого интереса это направление не вызывало, и до середины XIX века о математической логике знали немногие.

Большой интерес в научных сообществах вызвал спор, в котором англичанин Джордж Буль заявил о своем намерении создать раздел математики, не имеющий абсолютно никакого практического применения. Как мы помним из истории, в это время активно развивалось промышленное производство, разрабатывались всевозможные вспомогательные машины и станки, т. е. все научные открытия имели практическую направленность.

Забегая вперед, скажем, что булева алгебра - самая используемая в современном мире часть математики. Так что спор свой Буль проиграл.

Джордж Буль

Сама личность автора заслуживает отдельного внимания. Даже учитывая то, что в прошлом люди взрослели раньше нас, все равно нельзя не отметить, что в 16 лет Дж. Буль преподавал в деревенской школе, а к 20 годам открыл собственную школу в Линкольне. Математик отлично владел пятью иностранными языками, а в свободное время зачитывался работами Ньютона и Лагранжа. И все это - о сыне простого рабочего!

В 1839 году Буль впервые послал свои научные работы в Кембриджский математический журнал. Ученому исполнилось 24 года. Работы Буля настолько заинтересовали членов Королевского научного общества, что в 1844 году он получил медаль за вклад в развитие Еще несколько опубликованных работ, в которых были описаны элементы математической логики, позволили молодому математику занять пост профессора в колледже графства Корк. Напомним, что у самого Буля образования не было.

Идея

В принципе, булева алгебра очень проста. Существуют выражения), которые, с точки зрения математики, можно определить только двумя словами: «истина» или «ложь». Например, весной деревья расцветают - истина, летом идет снег - ложь. Вся прелесть этой математики заключается в том, что нет строгой необходимости использовать только числа. Для алгебры суждений вполне подходят любые высказывания с однозначным смыслом.

Таким образом, алгебра логики может быть использована буквально везде: в составлении расписаний и написании инструкций, анализе противоречивой информации о событиях и определении последовательности действий. Самое главное - понять, что совершенно неважно, как мы определили истинность или ложность высказывания. От этих «как» и «почему» нужно абстрагироваться. Значение имеет только констатация факта: истина-ложь.

Безусловно, для программирования важны функции алгебры логики, которые записываются соответствующими знаками и символами. И выучить их - это значит освоить новый иностранный язык. Нет ничего невозможного.

Основные понятия и определения

Не вдаваясь в глубины, разберемся с терминологией. Итак, булева алгебра предполагает наличие:

  • высказываний;
  • логических операций;
  • функций и законов.

Высказывания - любые утвердительные выражения, которые не могут быть истолкованы двузначно. Они записываются в виде чисел (5 > 3) или формулируются привычными словами (слон - самое большое млекопитающее). При этом фраза «у жирафа нет шеи» также имеет право на существование, только булева алгебра определит её как «ложь».

Все высказывания должны носить однозначный характер, но они могут быть элементарными и составными. Последние используют логические связки. Т. е. в алгебре суждений составные высказывания образуются сложением элементарных посредством логических операций.

Операции булевой алгебры

Мы уже помним, что операции в алгебре суждений - логические. Подобно тому, как алгебра чисел использует арифметические операции для сложения, вычитания или сравнения чисел, элементы математической логики позволяют составить сложные высказывания, дать отрицание или вычислить конечный результат.

Логические операции для формализации и простоты записываются формулами, привычными для нас в арифметике. Свойства булевой алгебры дают возможность записывать уравнения и вычислять неизвестные. обычно записывают с помощью таблицы истинности. Её столбцы определяют элементы вычислений и операцию, которая над ними производится, а строки показывают результат вычислений.

Основные логические действия

Самыми распространенными в булевой алгебре операциями являются отрицание (НЕ) и логические И и ИЛИ. Так можно описать практически все действия в алгебре суждений. Изучим подробнее каждую из трех операций.

Отрицание (не) применяется только к одному элементу (операнду). Поэтому операцию отрицания называют унарной. Для записи понятия «не А» используют такие символы: ¬A, A¯¯¯ или!A. В табличной форме это выглядит так:

Для функции отрицания характерно такое утверждение: если А истинно, то Б - ложно. Например, Луна вращается вокруг Земли - истина; Земля вращается вокруг Луны - ложь.

Логические умножение и сложение

Логическое И называют операцией конъюнкции. Что это значит? Во-первых, что применить ее можно к двум операндам, т. е. И - бинарная операция. Во-вторых, что только в случае истинности обоих операндов (и А, и Б) истинно и само выражение. Пословица «Терпение и труд все перетрут» предполагает, что только оба фактора помогут человеку справиться со сложностями.

Для записи используются символы: A∧Б, A⋅Б или A&&Б.

Конъюнкция аналогична умножению в арифметике. Иногда так и говорят - логическое умножение. Если перемножить элементы таблицы по строкам, мы получим результат, аналогичный логическому размышлению.

Дизъюнкцией называют операцию логического ИЛИ. Она принимает значение истинности тогда, когда хотя бы одно из (или А, или Б). Записывается это так: A∨Б, A+Б или A||Б. Таблицы истинности для этих операций такие:

Дизъюнкция подобна арифметическому сложению. Операция логического сложения имеет только одно ограничение: 1+1=1. Но мы же помним, что в цифровом формате математическая логика ограничена 0 и 1 (где 1 - истина, 0 - ложь). Например, утверждение «в музее можно увидеть шедевр или встретить интересного собеседника» означает, что можно посмотреть произведения искусства, а можно познакомиться с интересным человеком. В то же время, не исключен вариант одновременного свершения обоих событий.

Функции и законы

Итак, мы уже знаем, какие логические операции использует булева алгебра. Функции описывают все свойства элементов математической логики и позволяют упрощать сложные составные условия задач. Самым понятным и простым кажется свойство отказа от производных операций. Под производными понимаются исключающее ИЛИ, импликация и эквивалентность. Поскольку мы ознакомились только с основными операциями, то и свойства рассмотрим тоже только их.

Ассоциативность означает, что в высказываниях типа «и А, и Б, и В» последовательность перечисления операндов не играет роли. Формулой это запишется так:

(A∧Б)∧В=A∧(Б∧В)=A∧Б∧В,

(A∨Б)∨В=A∨(Б∨В)=A∨Б∨В.

Как видим, это свойственно не только конъюнкции, но и дизъюнкции.

Коммутативность утверждает, что результат конъюнкции или дизъюнкции не зависит от того, какой элемент рассматривался вначале:

A∧Б=Б∧A; A∨Б=Б∨A.

Дистрибутивность позволяет раскрывать скобки в сложных логических выражениях. Правила схожи с раскрытием скобок при умножении и сложении в алгебре:

A∧(Б∨В)=A∧Б∨A∧В; A∨Б∧В=(A∨Б)∧(A∨В).

Свойства единицы и нуля , которые могут быть одним из операндов, также аналогичны алгебраическим умножению на ноль или единицу и сложению с единицей:

A∧0=0,A∧1=A; A∨0=A,A∨1=1.

Идемпотентность говорит нам о том, что если относительно двух равных операндов результат операции оказывается аналогичным, то можно «выбросить» лишние усложняющие ход рассуждений операнды. И конъюнкция, и дизъюнкция являются идемпотентными операциями.

Б∧Б=Б; Б∨Б=Б.

Поглощение также позволяет нам упрощать уравнения. Поглощение утверждает, что когда к выражению с одним операндом применяется другая операция с этим же элементом, результатом оказывается операнд из поглощающей операции.

A∧Б∨Б=Б; (A∨Б)∧Б=Б.

Последовательность операций

Последовательность операций имеет немаловажное значение. Собственно, как и для алгебры, существует приоритетность функций, которые использует булева алгебра. Формулы могут упрощаться только при условии соблюдения значимости операций. Ранжируя от самых значимых до незначительных, получим такую последовательность:

1. Отрицание.

2. Конъюнкция.

3. Дизъюнкция, исключающее ИЛИ.

4. Импликация, эквивалентность.

Как видим, только отрицание и конъюнкция не имеют равных приоритетов. А приоритет дизъюнкции и исключающего ИЛИ равны, также как и приоритеты импликации и эквивалентности.

Функции импликации и эквивалентности

Как мы уже говорили, помимо основных логических операций математическая логика и теория алгоритмов использует производные. Чаще всего применяются импликация и эквивалентность.

Импликация, или логическое следование - это высказывание, в котором одно действие является условием, а другое - следствием его выполнения. Иными словами, это предложение с предлогами «если... то». «Любишь кататься, люби и саночки возить». Т. е. для катания необходимо затянуть санки на горку. Если же нет желания съехать с горы, то и санки таскать не приходится. Записывается это так: A→Б или A⇒Б.

Эквивалентность предполагает, что результирующее действие наступает только в том случае, когда истиной являются оба операнда. Например, ночь сменяется днем тогда (и только тогда), когда солнце встает из-за горизонта. На языке математической логики это утверждение записывается так: A≡Б, A⇔Б, A==Б.

Другие законы булевой алгебры

Алгебра суждений развивается, и многие заинтересовавшиеся ученые сформулировали новые законы. Наиболее известными считаются постулаты шотландского математика О. де Моргана. Он заметил и дал определение таким свойствам, как тесное отрицание, дополнение и двойное отрицание.

Тесное отрицание предполагает, что перед скобкой нет ни одного отрицания: не (А или Б)= не А или НЕ Б.

Когда операнд отрицается, независимо от своего значения, говорят о дополнении :

Б∧¬Б=0; Б∨¬Б=1.

И, наконец, двойное отрицание само себя компенсирует. Т.е. перед операндом либо исчезает отрицание, либо остается только одно.

Как решать тесты

Математическая логика подразумевает упрощение заданных уравнений. Так же, как и в алгебре, необходимо сначала максимально облегчить условие (избавиться от сложных вводных и операций с ними), а затем приступить к поиску верного ответа.

Что же сделать для упрощения? Преобразовать все производные операции в простые. Затем раскрыть все скобки (или наоборот, вынести за скобки, чтобы сократить этот элемент). Следующим действием должно стать применение свойств булевой алгебры на практике (поглощение, свойства нуля и единицы и т. д).

В конечном итоге уравнение должно состоять из минимального количества неизвестных, объединенных простыми операциями. Легче всего искать решение, если добиться большого количества тесных отрицаний. Тогда ответ всплывет как бы сам собой.

Одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия

математическая логика - ЛОГИКА СИМВОЛИЧЕСКАЯ, математическая логика, теоретическая логика область логики, в которой логические выводы исследуются посредством логических исчислений на основе строгого символического языка. Термин «Л. с.» был, по видимому, впервые… … Энциклопедия эпистемологии и философии науки

МАТЕМАТИЧЕСКАЯ ЛОГИКА - Ее еще называют символической логикой. М. л. это та же самая Аристотелева силлогистическая логика, но только громоздкие словесные выводы заменены в ней математической символикой. Этим достигается, во первых, краткость, во вторых, ясность, в… … Энциклопедия культурологии

МАТЕМАТИЧЕСКАЯ ЛОГИКА - МАТЕМАТИЧЕСКАЯ логика, дедуктивная логика, использующая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений … Современная энциклопедия

МАТЕМАТИЧЕСКАЯ ЛОГИКА - дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике … Большой Энциклопедический словарь

МАТЕМАТИЧЕСКАЯ ЛОГИКА - (символическая логика), аналитический раздел логики, результат применения математических методов к проблемам классической логики. Рассматривает понятия, которые могут быть истинными или ложными, связь между понятиями и оперирование ими, включая… … Научно-технический энциклопедический словарь

МАТЕМАТИЧЕСКАЯ ЛОГИКА - один из ведущих разделов современной логики и математики. Сформировался в 19 20 ст. как реализация идеи о возможности записать все исходные допущения на языке знаков, аналогичных математическим и тем самым заменить рассуждения вычислениями.… … Новейший философский словарь

математическая логика - сущ., кол во синонимов: 1 логистика (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

математическая логика - — Тематики электросвязь, основные понятия EN mathematical logic … Справочник технического переводчика

МАТЕМАТИЧЕСКАЯ ЛОГИКА - теоретическая логика, символическая логика, раздел математики, посвященный изучению математич. доказательств и вопросов оснований математики. Исторический очерк. Идея построения универсального языка для всей математики и формализации на базе… … Математическая энциклопедия

Книги

  • Математическая логика , Ершов Юрий Леонидович, Палютин Евгений Андреевич. В книге изложены основные классические исчисления математической логики: исчисление высказываний и исчисление предикатов; имеется краткое изложение основных понятий теории множеств и теории… Купить за 1447 грн (только Украина)
  • Математическая логика , Ершов Ю.Л.. В книге изложены основные классические исчисления математической логики: исчисление высказываний и исчисление предикатов; имеется краткое изложение основных понятий теории множеств и теории…


Похожие статьи
 
Категории