Спин значение. Спин электрона

23.09.2019

Л 3 -12

Спин электрона. Спиновое квантовое число. При классическом движении по орбите электрон обладает магнитным моментом. Причем классическое отношение магнитного момента к механическому имеет значение

, (1) гдеи– соответственно магнитный и механический момент. К аналогичному результату приводит и квантовая механика. Так как проекция орбитального момента на некоторое направление может принимать только дискретные значения, то это же относится и к магнитному моменту. Поэтому, проекция магнитного момента на направление вектораB при заданном значении орбитального квантового числаl может принимать значения

Где
– так называемыймагнетон Бора .

О. Штерн и В. Герлах в своих опытах проводили прямые измерения магнитных моментов. Они обнаружили, что узкий пучок атомов водорода, заведомо находящихся в s -состоянии, в неоднородном магнитном поле расщепляется на два пучка. В этом состоянии момент импульса, а с ним и магнитный момент электрона равен нулю. Таким образом, магнитное поле не должно оказывать влияние на движение атомов водорода, т.е. расщепления быть не должно.

Для объяснения этого и других явлений Гаудсмит и Уленбек выдвинули предпо­ложение, что электрон обладает собственным моментом импульса , не связанным с движением электрона в пространстве. Этот собственный момент был названспином .

Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Согласно этим представлениям для отношения магнитного и механического моментов должно выполняться соотношение (1). Экспериментально было установлено, что это отношение в действительности в два раза больше, чем для орбитальных моментов

. По этой причине, представление электрона как о вращающемся шарике оказывается несостоятельным. В квантовой механике спин электрона (и всех других микрочастиц) рассматривается как внутреннее неотъемлемое свойство электрона, подобное его заряду и массе.

Величина собственного момента импульса микрочастицы определяется в квантовой механике с помощью спинового квантового числа s (для электрона
)

. Проекция спина на заданное направление может принимать квантованные значения, отличающиеся друг от друга на. Для электрона

Гдемагнитное спиновое квантовое число .

Для полного описания электрона в атоме, таким образом, необходимо наряду с главным, орбитальным и магнитным квантовыми числами задавать еще магнитное спиновое квантовое число.

Тождественность частиц. В классической механике одинаковые частицы (скажем, электроны), несмотря на тождественность их физических свойств, можно пометить, пронумеровав, и в этом смысле считать частицы различимыми. В квантовой механике ситуация кардинально меняется. Понятие траектории теряет смысл, и, следовательно, при движении частицы перепутываются. Это означает, что нельзя сказать, какой из первоначально помеченных электронов попал в ту или иную точку.

Таким образом, в квантовой механике одинаковые частицы полностью теряют свою индивидуальность и становятся неразличимыми. Это утверждение или, как говорят, принцип неразличимости одинаковых частиц имеет важные следствия.

Рассмотрим систему, состоящую из двух одинаковых частиц. В силу их тождественности состояния системы, получающиеся друг из друга перестановкой обеих частиц должны быть физически полностью эквивалентными. На языке квантовой механики это означает, что

Где,– совокупности пространственных и спиновых координат первой и второй частицы. В итоге возможны два случая

Таким образом, волновая функция либо симметрична (не меняется при перестановки частиц), либо антисимметрична (т.е. при перестановке меняет знак). Оба этих случая встречаются в природе.

Релятивистская квантовая механика устанавливает, что симметрия или антисимметрия волновых функций определяется спином частиц. Частицы с полуцелым спином (электроны, протоны, нейтроны) описываются антисимметричными волновыми функциями. Такие частицы называют фермионами , и говорят, что они подчиняются статистике Ферми-Дирака. Частицы с нулевым или целочисленным спином (например, фотоны) описываются симметричными волновыми функциями. Эти частицы называютбозонами , и говорят, что они подчиняются статистике Бозе-Эйнштейна. Сложные частицы (например, атомные ядра), состоящие из нечетного числа фермионов, являются фермионами (суммарный спин – полуцелый), а из четного – бозонами (суммарный спин целый).

Принцип Паули. Атомные оболочки. Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Отсюда следует, что два фермиона, входящих в эту систему, не могут находиться в одинаковых состояниях, так как для фермионов волновая функция должна быть антисимметричной.

Из этого положения вытекает принцип запрета Паули : любые два фермиона не могут одновременно находиться в одном и том же состоянии.

Состояние электрона в атоме определяется набором четырех квантовых чисел:

главного n (
,

орбитального l (
),

магнитного (
),

магнитного спинового (
).

Распределение электронов в атоме по состояниям подчиняется принципу Паули, поэтому два электрона, находящихся атоме, различаются значениями, по крайней мере, одного квантового числа.

Определенному значению n соответствуетразличных состояний, отличающихсяl и. Так какможет принимать лишь два значения (
), то максимальное число электронов, находящихся в состояниях с даннымn , будет равно
. Совокупность электронов в многоэлектронном атоме, имеющих одно и то же квантовое числоn , называютэлектронной оболочкой . В каждой электроны распределяются поподоболочкам , соответствующих данномуl . Максимальное число электронов в подоболочке с даннымl равно
. Обозначения оболочек, а также распределение электронов по оболочкам и подоболочкам представлены в таблице.

Периодическая система элементов Менделеева. С помощью принципа Паули можно объяснить Периодическую систему элементов. Химические и некоторые физические свойства элементов определяются внешними валентными электронами. Поэтому периодичность свойств химических элементов непосредственно связана с характером заполнения электронных оболочек в атоме.

Элементы таблице отличаются друг от друга зарядом ядра и количеством электронов. При переходе к соседнему элементу последние увеличиваются на единицу. Электроны заполняют уровни так, чтобы энергия атома была минимальной.

В многоэлектронном атоме каждый отдельный электрон движется в поле, которое отличается от кулоновского. Это приводит к тому, что вырождение по орбитальному моменту снимается
. Причемc увеличениемl энергия уровней с одинаковымиn возрастает. Когда число электронов невелико, отличие в энергии с различнымиl и одинаковымиn не так велико, как между состояниями с различнымиn . Поэтому, сначала электроны заполняют оболочки с меньшимиn , начиная сs подоболочки, последовательно переходя к большим значениямl .

Единственный электрон атома водорода находится в состоянии 1s . Оба электрона атомаHeнаходятся в состоянии 1s с антипараллельными ориентациями спина. На атоме гелия заканчивается заполнениеK -оболочки, что соответствует завершениюIпериода таблицы Менделеева.

Третий электрон атома Li(Z 3)занимает наинизшее свободное энергетическое состояние сn 2 (L -оболочка), т.е. 2s -состояние. Так как он слабее других электронов связан с ядром атома, то им определяются оптические и химические свойства атома. Процесс заполнения электронов во втором периоде не нарушается. Заканчивается период неоном, у которогоL -оболочка целиком заполнена.

В третьем периоде начинается заполнение M -оболочки. Одиннадцатый электрон первого элемента данного периодаNa(Z 11) занимает наинизшее свободное состояние 3s . 3s -электронявляется единственным валентным электроном. В связи с этим оптические и химические свойства натрия подобны свойствам лития. У следующих за натрием элементов нормально заполняются подоболочки 3s и 3p .

Впервые нарушение обычной последовательности заполнения уровней происходит у K(Z 19). Его девятнадцатый электрон должен был бы занять 3d -состояние вM-оболочке. При данной общей конфигурации подоболочка 4s оказывается энергетически ниже подоболочки 3d . В связи с чем, при незавершенном в целом заполнении оболочкиMначинается заполнение оболочкиN. В оптическом и химическом отношении атомKподобен атомамLiиNa. Все эти элементы имеют валентный электрон вs -состоянии.

С аналогичными отступлениями от обычной последовательности, повторяющимися время от времени, осуществляется застройка электронных уровней всех атомов. При этом периодически повторяются сходные конфигурации внешних (валентных) электронов (например, 1s , 2s , 3s и т.д.), чем обуславливается повторяемость химических и оптических свойств атомов.

Рентгеновские спектры. Самым распространенным источником рентгеновского излучения является рентгеновская трубка, в которой сильно ускоренные электрическим полем электроны бомбардируют анод. При торможении электронов возникает рентгеновское излучение. Спектральный состав рентгеновского излучения представляет собой наложение сплошного спектра, ограниченного со стороны коротких волн граничной длиной
, и линейчатого спектра – совокупности отдельных линий на фоне сплошного спектра.

Сплошной спектр обусловлен излучением электронов при их торможении. Поэтому его называют тормозным излучением . Максимальная энергия кванта тормозного излучения соответствует случаю, когда вся кинетическая энергия электрона переходит в энергию рентгеновского фотона, т.е.

, гдеU – ускоряющая разность потенциалов рентгеновской трубки. Отсюда граничная длина волны. (2) Измерив коротковолновую границу тормозного излучения, можно определить постоян­ную Планка. Из всех методов определенияданный метод считается самым точным.

При достаточно большой энергии электронов на фоне сплошного спектра появ­ляются отдельные резкие линии. Линейчатый спектр определяется только материалом анода, поэтому данное излучение называется характеристическим излучением .

Характеристические спектры отличается заметной простотой. Они состоят из нескольких серий, обозначаемых буквами K ,L ,M , N иO . Каждая серия насчитывает небольшое число линий, обозначаемых в порядке возрастания частоты индексами,,… (
,,, …;,,, … и т.д.). Спектры разных элементов имеют сходный характер. При увеличении атомного номераZ весь рентгеновский спектр целиком смещается в коротковолновую часть, не меняя своей структуры (рис.). Это объясняется тем, что рентгеновские спектры возникают при переходах внутренних электронов, которые для разных атомов являются сходными.

Схема возникновения рентгеновских спектров дана на рис. Возбуждение атома состоит в удалении одного из внутренних электронов. Если вырывается один из двух электронов K -слоя, то освободившееся место может быть занято электроном из какого-либо внешнего слоя (L ,M ,N и т.д.). При этом возникаетK -серия. Аналогично возникают и другие серии, наблюдаемые, впрочем, только для тяжелых элементов. СерияK обязательно сопровождается остальными сериями, так как при испускании ее линий освобождаются уровни в слояхL ,M и т.д., которые будут в свою очередь заполнятся электронами из более высоких слоев.

Исследуя рентгеновские спектры элементов, Г. Мозли установил соотношение, называемое законом Мозли

, (3) где– частота линии характеристического рентгеновского излучения,R – постоянная Ридберга,
(определяет рентгеновскую серию),
(определяет линию соответствующей серии), – постоянная экранирования.

Закон Мозли позволяет по измеренной длине волны рентгеновских линий точно установить атомный номер данного элемента; этот закон сыграл большую роль при размещении элементов в периодической таблице.

Закону Мозли можно дать простое объяснение. Линии с частотами (3), возникают при переходе электрона, находящегося в поле заряда
, с уровня с номеромn на уровень с номеромm . Постоянная экранирования возникает из-за экранирования ядраZe другими электронами. Ее значение зависит от линии. Например, для
-линии
и закон Мозли запишется в виде

.

Связь в молекулах. Молекулярные спектры. Различают два вида связи между атомами в молекуле: ионную и ковалентную связь.

Ионная связь. Если два нейтральных атома постепенно сближать друг с другом, то в случае ионной связи наступает момент, когда внешний электрон одного из атомов предпочитает присоединиться к другому атому. Атом, потерявший электрон, ведет себя как частица с положительным зарядомe , а атом, приобретший лишний электрон, – как частица с отрицательным зарядомe . Примером молекулы с ионной связью может служитьHCl, LiF, идр.

Ковалентная связь. Другим распространенным типом молекулярной связи является ковалентная связь (например, в молекулахH 2 ,O 2 ,CO). В образовании ковалентной связи участвуют два валентных электрона соседних атома с противоположно направленными спинами. В результате специфического квантового движения электронов между атомами образуется электронное облако, которое обуславливает притяжение атомов.

Молекулярные спектры сложнее атомных спектров, так как кроме движения электронов относительно ядер в молекуле происходятколебательные движения ядер (вместе с окружающими их внутренними электронами) около положений равновесия ивращательные движения молекул.

Молекулярные спектры возникают в результате квантовых переходов между уровнями энергий
и
молекул согласно соотношению

, где
–энергия испущенного или поглощаемого кванта частоты. При комбинационном рассеянии света
равна разности энергий падающего и рассеянного фотона.

Электронному, колебательному и вращательному движениям молекул соответствуют энергии
,
и
. Полная энергия молекулыE может быть представлена в виде суммы этих энергий

, причем по порядку величины, гдеm – масса электрона,M – масса молекулы (
). Следовательно
. Энергия
эВ,
эВ,
эВ.

Согласно законам квантовой механики, эти энергии принимают только квантованные значения. Схема энергетических уровней двухатомной молекулы представлена на рис. (для примера рассмотрены только два электронных уровня –показаны жирными линиями). Электронные уровни энергии далеко отстоят друг от друга. Колебательные уровни расположены значительно ближе друг к другу, а вращательные уровни энергии располагаются еще ближе друг к другу.

Типичные молекулярные спектры – полосатые, в виде совокупности полос различной ширины в УФ, видимой и ИК области спектра.

Положительное число - так называемое спиновое квантовое число , которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия .

Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике . Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами ; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы .

Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы .

Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином описываются однокомпонентной волновой функцией (скаляр), со спином 1 2 {\displaystyle {\frac {1}{2}}} описываются двухкомпонентной волновой функцией (спинор), со спином 1 {\displaystyle 1} описываются четырёхкомпонентной волновой функцией (вектор), со спином 2 {\displaystyle 2} описываются шестикомпонентной волновой функцией (тензор) .

Энциклопедичный YouTube

  • 1 / 5

    Хотя термин спин относится только к квантовым свойствам частиц, свойства некоторых циклически действующих макроскопических систем тоже может быть описаны неким числом, которое показывает на сколько частей нужно разделить цикл вращения некого элемента системы, для того, чтобы она вернулась в состояние, неотличимое от начального.

    Самый простой пример спина - это целый спин равный 1:

    если взять вектор (для примера - положить ручку на стол) и повернуть его на 360 градусов , то этот вектор вернется в своё первоначальное состояние (ручка опять будет лежать так же, как и до поворота).

    Также легко представить себе спин равный 0 :

    это точка - она со всех сторон выглядит одинаково , как её ни крути.

    Чуть сложнее с целым спином равным 2 :

    нужно будет придумать объект, который ведёт себя так же, как в предыдущем примере со спином 1, но при повороте на 180 градусов (то есть вдвое меньше полного оборота) - это тоже просто - нужно взять двунаправленный вектор (примером из жизни может служить обычный карандаш, только заточенный с двух сторон или не заточенный вообще - главное чтобы был без надписей и однотонный, Хокинг в качестве примера приводил обычную игральную карту типа короля или дамы ) - и тогда после поворота на 180 градусов он вернется в положение, не отличимое от исходного.

    А вот c полуцелым спином равным 1 / 2 уже придётся выходить в 3 измерения:

    • Если взять лист Мёбиуса и представить, что по нему ползет муравей, тогда, сделав один оборот (пройдя 360 градусов), муравей окажется в той же точке, но с другой стороны листа, а чтобы вернуться в точку, откуда он начал, придётся пройти все 720 градусов .
    • Еще один пример - четырехтактный двигатель внутреннего сгорания. При повороте коленчатого вала на 360 градусов поршень вернется в исходное положение (например, верхнюю мертвую точку), но распределительный вал вращается в 2 раза медленное и совершит полный оборот при повороте коленчатого вала на 720 градусов. То есть при повороте колечатого вала на 2 оборота двигатель внутреннего сгорания вернется в то же состояние. В этом случае третьим измерением будет положение распределительного вала.

    На подобных примерах можно проиллюстрировать сложение спинов:

    • Два заточенных только с одной стороны одинаковых карандаша ("спин" каждого - 1), скрепленные друг с другом, так, что острый конец одного будет рядом с тупым концом другого. Такая система вернется в неотличимое от начального состояния при повороте всего на 180 градусов, то есть "спин" системы стал равным двум.
    • Многоцилиндровый четырехтактный двигатель внутреннего сгорания ("спин" каждого из цилиндров которого равен 1/2). Если все цилиндры работают одинаково, то состояния, при которых поршень находится в начале такта рабочего хода в любом из цилиндров, будут неотличимы. Следовательно, двухцилиндровый двигатель будет возвращаться в состояние, неотличимое от исходного, через каждые 360 градусов (суммарный "спин" - 1), четырехцилиндровый - через 180 градусов ("спин" - 2), восьмицилиндровый - через 90 градусов ("спин" - 4).

    Свойства спина

    Любая частица может обладать двумя видами углового момента : орбитальным угловым моментом и спином.

    В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики . Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

    «В частности было бы совершенно бессмысленным представлять себе собственный момент элементарной частицы, как результат ее вращения „вокруг собственной оси“»

    Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина s → ^ , {\displaystyle {\hat {\vec {s}}},} алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента ℓ → ^ . {\displaystyle {\hat {\vec {\ell }}}.} Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

    Спин испытывает квантовые флуктуации. В результате квантовых флуктуаций строго определённое значение может иметь только одна компонента спина, например . При этом компоненты J x , J y {\displaystyle J_{x},J_{y}} флуктуируют вокруг среднего значения. Максимально возможное значение компоненты J z {\displaystyle J_{z}} равно J {\displaystyle J} . В то же время квадрат J 2 {\displaystyle J^{2}} всего вектора спина равен J (J + 1) {\displaystyle J(J+1)} . Таким образом J x 2 + J y 2 = J 2 − J z 2 ⩾ J {\displaystyle J_{x}^{2}+J_{y}^{2}=J^{2}-J_{z}^{2}\geqslant J} . При J = 1 2 {\displaystyle J={\frac {1}{2}}} среднеквадратические значения всех компонент из-за флуктуаций равны J x 2 ^ = J y 2 ^ = J z 2 ^ = 1 4 {\displaystyle {\widehat {J_{x}^{2}}}={\widehat {J_{y}^{2}}}={\widehat {J_{z}^{2}}}={\frac {1}{4}}} .

    Вектор спина меняет своё направление при преобразовании Лоренца. Ось этого поворота перпендикулярна импульсу частицы и относительной скорости систем отсчёта .

    Примеры

    Ниже указаны спины некоторых микрочастиц.

    спин общее название частиц примеры
    0 скалярные частицы π -мезоны , K-мезоны , хиггсовский бозон , атомы и ядра 4 He , чётно-чётные ядра, парапозитроний
    1/2 спинорные частицы электрон , кварки , мюон , тау-лептон , нейтрино , протон , нейтрон , атомы и ядра 3 He
    1 векторные частицы фотон , глюон , W- и Z-бозоны , векторные мезоны , ортопозитроний
    3/2 спин-векторные частицы Ω-гиперон , Δ-резонансы
    2 тензорные частицы гравитон , тензорные мезоны

    На июль 2004 года, максимальным спином среди известных барионов обладает барионный резонанс Δ(2950) со спином 15/2. Спин стабильных ядер не может превышать 9 2 ℏ {\displaystyle {\frac {9}{2}}\hbar } .

    История

    Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина .

    Спин и магнитный момент

    Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент , а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем . Отношение величины магнитного момента к величине спина называется гиромагнитным отношением , и, в отличие от орбитального углового момента, оно не равно магнетону ( μ 0 {\displaystyle \mu _{0}} ):

    μ → ^ = g ⋅ μ 0 s → ^ . {\displaystyle {\hat {\vec {\mu }}}=g\cdot \mu _{0}{\hat {\vec {s}}}.}

    Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц .

    Спин и статистика

    Вследствие того, что все элементарные частицы одного и того же сорта тождественны , волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе - Эйнштейна и называются бозонами . Во втором случае частицы описываются статистикой Ферми - Дирака и называются фермионами .

    Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) - фермионами .

    © Мученик Науки.

    Приняты следующие обозначения:
    - Векторы – жирными буквами чуть большего размера чем остальной текст. W , g , A .
    - пояснения к обозначениям в таблицах – курсивом.
    - целочисленные индексы – жирным шрифтом обычного размера.
    m , i , j .
    - не векторные переменные величины и формулы – курсивом чуть более крупного размера:
    q , r , k , sin , cos .

    Момент импульса. Школьный уровень.

    Момент импульса характеризует количество вращательного движения. Это величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
    Момент импульса вращающейся вокруг оси Z гантельки из двух шариков массы m , каждый из которых расположен на расстоянии l от оси вращения, с линейной скоростью шариков V , равен:

    M= 2·m·l·V ;

    Ну понятно, в формуле стоит 2 потому что у гантельки два шарика.

    Момент импульса. Университетский уровень.

    Момент импульса L материальной точки (кинетический момент, угловой момент, орбитальный момент, момент количества движения ) относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

    L = [ r х p ]

    где r - радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, p - импульс частицы.
    Для нескольких частиц момент импульса определяется как (векторная) сумма таких членов:

    L = Σ i [ r i х p i ]

    где r i , p i - радиус-вектор и импульс каждой частицы, входящей в систему, момент импульса которой определяется.
    В пределе количество частиц может быть бесконечным, например, в случае твердого тела с непрерывно распределенной массой или вообще распределённой сиситемы
    это может быть записано как

    L = r xd p

    где d p - импульс бесконечно малого точечного элемента системы.
    Из определения момента импульса следует его аддитивность как для системы частиц в частности, так и для системы, состоящей из нескольких подсистем, выполняется:

    L Σ = Σ i L i


    Опыт Штерна и Герлаха.

    В 1922 году физики проделали эксперимент, в котором оказалось, что атомы серебра имеют свой момент импульса. Причём проекция этого момента импульса на ось Z (см.рис) оказалась равной либо некоторой положительной величине, либо некоторой отрицательной величине, но не нулю. Это невозможно объяснить орбитальным моментом импульса электронов в атоме серебра. Потому что орбитальные моменты обязательно давали бы, в том числе, и нулевую проекцию. А здесь строго плюс и минус, и в нуле ничего. Впоследствии, в 1927 г. это было интерпретировано как доказательство существования спина у электронов.
    В опыте Штерна и Герлаха (1922) путем испарения в вакуумной печи атомов серебра или другого металла с помощью тонких щелей формируется узкий атомный пучок (рис).

    Этот пучок пропускается через неоднородное магнитное поле с существенным градиентом магнитной индукции. Индукция магнитного поля B в опыте велика и направлена вдоль оси Z . На пролетающие в зазоре магнита атомы вдоль направления магнитного поля действует сила F z , обусловленная градиентом индукции неоднородного магнитного поля и зависящая от величины проекции магнитного момента атома на направление поля. Эта сила отклоняет движущийся атом в направлении оси Z , причем за время пролета магнита движущийся атом отклоняется тем больше, чем больше величина силы. При этом одни атомы отклоняются вверх, а другие вниз.
    С позиций классической физики, пролетевшие через магнит атомы серебра должны были образовать сплошную широкую зеркальную полосу на стеклянной пластинке.
    Если же, как предсказывает квантовая теория, имеет место пространственное квантование, и проекция магнитного момента
    p Z M атома принимает только определенные дискретные значения, то под действием силы F Z атомный пучок должен расщепиться на дискретное число пучков, которые, оседая на стеклянной пластинке, дают серию узких дискретных зеркальных полосок из напыленных атомов. Именно этот результат наблюдался в эксперименте. С одним лишь но: не было полоски по самому центру пластинки.
    Но это ещё не было открытием спина у электронов. Ну дискретный ряд моментов импульса у атомов серебра, ну и что? Однако учёные продолжали думать, почему нет полоски по центру пластины?
    Пучок невозбужденных атомов серебра расщепился на два пучка, которые напылили на стеклянной пластинке две узкие зеркальные полоски, сдвинутые симметрично вверх и вниз. Измерение этих сдвигов позволило определить магнитный момент невозбужденного атома серебра. Его проекция на направление магнитного поля оказалась равной
    + μ Б или -μ Б . То есть магнитный момент невозбуждённого атома серебра оказался строго не равным нулю. Это не имело объяснения.
    Однако, из химии было известно, что валентность серебра равна +1 . То есть на внешней электронной оболочке находится один активный электрон. А общее число электронов в атоме нечётно.

    Гипотеза о спине электрона

    Это противоречие теории и опыта стало не единственным, обнаруженным в различных экспериментах. Такое же отличие наблюдалось при изучении тонкой структуры оптических спектров щелочных металлов (они, кстати, тоже одновалентны). В опытах с ферромагнетиками было обнаружено аномальное значение гиромагнитного отношения, отличающегося от ожидаемого значения в два раза.
    В 1924 г. Вольфганг Паули ввёл двухкомпонентную внутреннюю степень свободы для описания эмиссионных спектров валентного электрона в щелочных металлах.
    В который раз обращает на себя внимание, как западные учёные с лёгкостью придумывают новые частицы, феномены, реальности для объяснения старых. Точно так же введён и бозон Хиггса для объяснения массы. Далее будет бозон Шмиггса для объяснения бозона Хиггса.
    В 1927 году Паули модифицирует недавно открытое уравнение Шрёдингера для учёта спиновой переменной. Модифицированное таким образом уравнение носит сейчас название уравнение Паули. При таком описании у электрона появляется новая спиновая часть волновой функции, которая описывается спинором — «вектором» в абстрактном двумерном спиновом пространстве.
    Это позволило ему сформулировать принцип Паули, согласно которому в некоторой системе взаимодействующих частиц у каждого электрона должен быть свой собственный неповторяющийся набор квантовых чисел (все электроны в каждый момент времени находятся в разных состояниях). Поскольку физическая интерпретация спина у электрона была неясна с самого начала (и это имеет место до сих пор), в 1925 г. Ральф Крониг (ассистент известного физика Альфреда Ланде) высказал предположение о спине как результате собственного вращения электрона.
    Все эти трудности квантовой теории были преодолены, когда осенью 1925 г. Дж. Уленбек и С. Гаудсмит постулировали, что электрон является носителем "собственных" механического и магнитного моментов, не связанных с движением электрона в пространстве. То есть обладает спином S = ½ ћ в единицах постоянной Дирака ћ , и спиновым магнитным моментом, равным магнетону Бора. Это предположение и было принято научным сообществом, поскольку удовлетворительно объясняло известные факты.
    Эта гипотеза получила название гипотезы о спине электрона. Такое название связано с английским словом
    spin , которое переводится как "кружение", "верчение".
    В 1928 г. П.Дирак ещё сильнее обобщил квантовую теорию на случай релятивистского движения частицы и вводит уже четырёхкомпонентную величину — биспинор.
    В основе релятивистской квантовой механики лежит уравнение Дирака, записанное первоначально для релятивистского электрона. Это уравнение значительно сложнее уравнения Шредингера по своей структуре и математическому аппарату, используемому при его записи. Мы не станем обсуждать это уравнение. Скажем лишь, что из уравнения Дирака четвертое, спиновое квантовое число получается так же «естественно», как и три квантовых числа при решении уравнения Шредингера.
    В квантовой механике квантовые числа для спина не совпадают с квантовыми числами для орбитального момента частиц, что приводит к неклассической трактовке спина. Кроме этого, у спина и орбитального момента частиц возникает различная связь с соответствующими магнитными дипольными моментами, сопровождающими любое вращение заряженных частиц. В частности, в формуле для спина и его магнитного момента гиромагнитное отношение не равно 1 .
    Концепция спина у электрона привлекается для объяснения многих явлений, таких как расположение атомов в периодической системе химических элементов, тонкая структура атомных спектров, эффект Зеемана, ферромагнетизм, а также для обоснования принципа Паули. Недавно возникшая область исследований, называемая «спинтроника», занимается манипуляциями спинов зарядов в полупроводниковых устройствах. В ядерном магнитном резонансе используется взаимодействие радиоволн со спинами ядер, позволяющее осуществлять спектроскопию химических элементов и получать изображения внутренних органов в медицинской практике. Для фотонов как частиц света спин связывается с поляризацией света.

    Механическая модель спина.

    В 20-30-х годах прошлого столетия было проведено множество экспериментов, которые доказали наличие спина у элементарных частиц. Эксперименты доказали реальность спина как именно момента вращения. Но откуда берётся это вращение в электроне или протоне?

    Предположим простейшее, что электрон - это малюсенький твердый шарик. Предполагаем, что этот шарик имеет некую среднюю плотность и некие физические параметры, близкие к известным экспериментальным и теоретическим величинам реального электрона. Имеем экспериментальные величины:
    Масса покоя электрона: m e
    Спин электрона S e = ½ ћ
    В качестве линейного размера объекта берем его комптоновскую длину волны, подтвержденную как экспериментально, так и теоретически. Комптоновскую длина волны электрона:

    Очевидно, это диаметр объекта. Радиус в 2 раза меньше:

    Имеем теоретические величины, получаемые из механики и квантовой физики.
    1) Вычисляем момент инерции объекта I e . Поскольку мы не знаем достоверно его формы, то вводим поправочный коэффициенты k e , который, в зависимости от формы, теоретически может иметь величину от почти 0,0 (иголка, вращающаяся вокруг длинной оси) до 1,0 (при точной форме длинной гантельки как на рисунке в начале статьи или широкого, но тонкого бублика). К примеру, значение 0,4 достигается при точной форме шара. Итак:


    2) Из формулы S = I · ω , находим угловую скорость вращения объектов:

    3) Этой угловой скорости соответствует линейная скорость V "поверхности" электрона:


    Или

    V = 0,4 c ;

    Если брать как на рисунке в начале статьи электрон имеющим вид гантельки, то получается

    V = 0,16 c ;

    4) Совершенно аналогично проделываем выкладки для протона или нейтрона. Линейная скорость "поверхности" протона или нейтрона для шариковой модели получается точно такая же, 0,4 c :

    5) Делаем выводы. Результат зависит от формы объекта (коэффициент k при вычислении момента инерции) и от коэффициентов в формулах для спинов электрона или протона (½). Но, как ни крути, а в среднем получается около, близко к скорости света . Как у электрона, так и у протона. Не больше скорости света! Результат, который трудно назвать случайным. Мы делали "бессмысленные" выкладки, но получили абсолютно осмысленный, выделенный результат!

    Все не так, ребята! - говорил Владимир Высоцкий. Это не сигнал, это дилемма: либо - либо! Либо что-то пополам, либо что-то вдребезги. Эйнштейн и Шрёдингер лишают смысла эти рассуждения, так как по Эйнштейну при скоростях порядка скорости света масса растет до бесконечности, а по Шрёдингеру они не имеют ни формы, ни размеров. Однако все на свете "относительно" и неизвестно, что чего и кто кого лишает смысла. Теория Гукуума имеет ответ, по которому волновые вихри – электроны, в Гукууме как раз и крутятся со световой линейной скоростью! Собственно масса - она всегда движется и всегда исключительно со световой скоростью. Электрон и протон, каждый элемент в них, каждая точка движется по своей замкнутой траектории и не иначе как со скоростью света. Именно в этом и состоит настоящий и простой смысл формулы:

    Это практически удвоенная формула кинетической энергии волны. Почему удвоенная? – Потому что в упругой волне половина энергии кинетическая, а вторая половина энергии – скрытая, потенциальная, в виде деформации среды, в которой происходит распространение волны.

    Фразы, объясняющие спин электрона.

    Какова же таки физическая природа наличия у электрона спина, если она не объяснима с механической точки зрения? Ответа на этот вопрос нет не только к классической физике, но и рамках нерелятивистской квантовой механики, в основе которой лежит уравнение Шредингера. Спин вносится в виде некой дополнительной гипотезы, необходимой для согласования эксперимента и теории.

    Рассуждения о форме или внутреннем устройстве элементарных частиц, например электрона, в современной физике легко относятся к "не имеющим смысла". Раз их глазами не видно, значит нечего и спрашивать! Микробы появились на свет с изобретением микроскопа (Михаил Генин). Попытки таких рассуждений всегда заканчиваются словами, что,

    Фраза №1.
    Законы и понятия классической физики перестают действовать в микромире.
    Если само местонахождение объекта неизвестно, это Ψ -функция, то что говорить об его устройстве? Размазан - и всё тут. Нет никакого устройства.
    То же самое говорится и о физическом смысле момента импульса - спина электрона (протона). Вращение как бы есть, спин тоже есть, но

    Фраза №2.
    Спрашивать как выглядит это вращение - "не имеет смысла".
    Есть аналогии и в макро - мире. Допустим, мы хотим спросить олигарха: а как вы заработали свои миллиарды? Или, где вы храните наворованное? - А вам отвечают: ваш вопрос не имеет смысла! Тайна за семью печатями.

    Фраза №3.
    Спин электрона не имеет классического аналога.
    То есть спин как бы имеет какой-то аналог, но вот классического аналога он не имеет. Он как бы характеризует внутреннее свойство квантовой частицы, связанное с наличием у нее дополнительной степени свободы. Количественная характеристика этой степени свободы - спин S = ½ ћ является для электрона такой же величиной как, например, его масса m 0 и заряд - e . Однако спин – это реально вращение, это момент вращения и проявляется в экспериментах.

    Фраза №4.
    Спин вносится в виде дополнительной гипотезы, не вытекающей из основных положений теории, но необходимой для согласования эксперимента и теории .

    Фраза №5.
    Спин является некоторым внутренним свойством, наподобие массы или заряда, требующим особого, пока ещё не известного обоснования
    .
    Другими словами. Спин (от англ. spin — вертеться, вращение) — собственный момент импульса элементарных частиц, имеющий «квантовую природу» и не связанный с движением частицы как целого. В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с любым движением в пространстве. Спин — это якобы внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках механики.

    Фраза №6.
    Однако, несмотря на всю свою загадочность происхождения, спин является объективно существующей и вполне измеряемой физической величиной.

    В то же время, оказывается, что спин (и его проекции на какую-либо ось) могут принимать только целые или полуцелые значения в единицах постоянной Дирака
    ħ = h /2π . Где h – постоянная Планка. Для тех частиц, которые имеют полуцелые спины, проекция спина не бывает равной нулю.

    Фраза №7.
    Существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Обобщение этой идеи в ядерной физике привело к понятию изотопического спина, который действует в «особом изоспиновом пространстве».
    Как говорится, уж молоть так молоть!
    В дальнейшем, при описании сильных взаимодействий были введены внутреннее цветовое пространство и квантовое число «цвет» — более сложный аналог спина.
    То есть, количество загадок нарастало, но все они решались гипотезой, что существует некое пространство состояний, не связанных с перемещением частицы в обычном пространстве.

    Фраза №8.
    Итак, в самых общих словах можно сказать, что собственные механический и магнитный моменты у электрона появляются как следствие релятивистских эффектов в квантовой теории.

    Фраза №9.
    Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого.

    Фраза №10.
    Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия.

    Фраза 11.
    Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина ŝ , алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента
    l . Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина.
    Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения.

    Фраза 12.
    В квантовой механике квантовые числа для спина не совпадают с квантовыми числами для орбитального момента частиц, что приводит к неклассической трактовке спина.
    Как говорится, если часто что-то повторять, то этому начинаешь верить. Вот сейчас далдонят, демократия, демократия, власть закона. И люди привыкают, начинают верить.
    Также неявно используется перевод с английского слова «спин» – от англ. вращаться. Дескать англичане–то смысл спина знают, просто переводчики никак не могут толково перевести.

    Структура электрона.

    Как показывает попытка погуглить размер электрона, это тоже для всех физиков такая же загадка как и природа спина электрона. Попробуйте, и вы не найдёте нигде, ни в Википедии, ни в Физической энциклопедии. Выдвигаются самые разные цифры. От долей процента размера протона, до тысяч размеров протона. А без знания размера электрона, а ещё лучше структуры электрона, невозможно понять происхождение его спина.
    А вот теперь подойдём к объяснению спина с позиции структурного электрона. С позиции теории упругой вселенной. Вот так выглядит электрон.

    Здесь изображены не твёрденькие колечки, не бублики, а волновые кольца. То есть бегающие по кругу волны, такое решение даёт математика. Вертящиеся по кругу со скоростью света , причём (!) соседние кольца движутся в противоположных направлениях. Собственно, этот рисунок есть иллюстрация формулы распределения энергии внутри электрона:

    Желающие могут легко проверить эту формулу.
    Здесь q – радиальная координата.
    Именно это вращение составляющих колец создаёт суммарный ненулевой внутренний момент импульса - спин электрона. В этом - разгадка появления спина, который до сих пор остаётся загадкой в общепринятой науке. Правда, эту загадку на деле никто и не стремится разгадать, но это отдельный вопрос.
    Именно это вращение соседних колец в противоположные стороны, во-первых даёт сходимость интеграла по моменту вращения, а во-вторых, создаёт несоответствие между магнитным моментом и спином.
    На этом (приблизительном) рисунке показаны только основные, ближайшие кольца, всего их бесконечно много. Весь объект является единым целым, очень устойчивым, никакая часть его не может быть удалена. И это целое - есть элементарная частица, электрон. Это не выдумка, не фантазия, не подгонка. Это, еще раз, строгая математика!
    Пусть не пугаются от неожиданности те, кто считает, что в атоме водорода (простейший случай) электрон вращается вокруг ядра. Нет, он не вращается как целое вокруг ядра. Просто электрон – это облако, реальное волновое облако, и таковым он является даже когда одиночный и свободный. Просто ядро атома водорода находится внутри электрона.

    Объяснение феномена спина.

    А дальше остаётся только вычислить момент импульса данной сложной структуры из волновых бубликов.
    Момент импульса электрона определяется следующим образом.
    - Есть распределения энергии в электроне. При переходе из слоя в слой направление движения энергии изменяется на противоположное.
    Таким образом, правдоподобная общая формула для проекции момента импульса всех частиц
    M z , имеет вид:

    R - ранее определённая величина.

    Под знаком интеграла четыре элемента, которые для наглядности выделены в квадратные скобки. Первая квадратная скобка содержит в себе элементы плотности массы электрона (отличие от энергии - c 2 в знаменателе), с учетом "наслоения" бегущей волны саму на себя (r 2 в знаменателе) и также с учетом знака, с которым эта масса войдет в формулу момента импульса (функция sign ). То есть, в зависимости от направления вращения данного элемента. Вторая квадратная скобка - расстояние от оси вращения - оси Z . Третья квадратная скобка - скорость движения элемента массы, скорость света. Четвертая - элемент объема. То есть это момент импульса в классическом его понимании.

    Данное уравнение для момента импульса не объявляется точным количественно, хотя и это не исключено. Но корреляционную картину распределения момента импульса оно дает. А как станет видно из окончательных результатов, такое определение момента импульса дает и хорошее количественное значение момента импульса (с точностью до знака).
    Полный момент импульса электрона после численного интегрирования:

    Где L 1 и L 2 - коэффициенты Ламэ Гукуума (характеристики упругости). Они приводятся на указанном сайте.
    Как показывает анализ, данная формула прекрасно вписывается в известные физические результаты. Но анализ её слишком объёмен чтобы выкладывать здесь.

    Сравнение теоретических и экспериментальных размеров частиц.

    Данная процедура делается вот для чего. В найденные теоретические формулы для связи размеров частиц, их масс и спинов, подставляются их известные экспериментальные спины и массы. После чего вычисляются (полу)теоретические размеры частиц и сравниваются с известными экспериментальными. Так оказалось удобнее.
    Вводятся обозначения: локи (0,0), (1,0) и (1,1) – это, соответственно, электрон, нейтрон и протон.

    Теоретические величины.





    Какое отношение имеют величины, λ 0,0 , λ 1,0 , λ 1,1 к реальным размерам частиц? Если посмотреть на теоретические распределения плотности частиц (или на рисунок электрона), то видно, что они распределены волнообразно, с убыванием. Эффективный радиус каждой частицы, до радиуса, охватывающего основную часть массы (это 3-4 волны плотности) примерно равен:

    R 0,0 ≈ 2,5 π единиц q ;

    R 1,0 ≈ 2 π единиц q ;

    R 1,1 ≈ 2 π единиц q .

    Где h - обычная, не перечеркнутая постоянная Планка.
    Имеющий глаза да увидит: эффективные теоретические радиусы локов (0,0), (1,0) и (1,1) равны почти в точности половине комптоновской длине волны электрона, нейтрона и протона. То есть, комптоновская длина волны частицы выступает как их диаметр.

    Комптоновская длина волны есть линейный размер, а масса частицы характеризует объём частицы, то есть линейный размер в кубе. Как видно, в формуле масса стоит в знаменателе. По этой причине относиться к этой формуле слишком доверительно не стоит. Было бы, на наш взгляд, правильнее за размер частицы брать величину, пропорциональную следующей:

    Где K – некоторый коэффициент пропорциональности.
    Изначально протон в 12 раз (по размеру) меньше электрона и легко влезает в центральную дырку электрона. А затем при взаимодействии электрона с протоном электрон меняет своё состояние (в поле протона) и раздувается ещё в 40 раз, что не удивительно.

    Так устроен атом водорода (жёлтенький протон внутри серого электрона).
    Как известно из официальной физики, комптоновский размер электрона (R компт =1,21▪10 -10 см .) примерно в 40 раз меньше чем размер атома водорода (первый боровский радиус равен: R бор =0,53▪10 -8 см .). Это кажущееся противоречие с нашей теорией, которое нуждается в устранении и уточнении. Либо при образовании водорода электрон (как волновое облако) меняет свою форму и растягивается. При этом он обволакивает протон. Либо надо пересмотреть, что же такое боровский радиус и каков его физический смысл. Физику в части размеров частиц надо капитально пересмотреть.

    Итак, полностью абстрагируемся и забываем любые классические определения. Ибо спин – это понятие, присущее исключительно квантовому миру. Попробуем разобраться в том, что это такое.

    Больше полезной информации для учащихся – у нас в телеграм .

    Спин и момент импульса

    Спин (от английского spin – вращаться) – собственный момент импульса элементарной частицы.

    Теперь вспомним, что такое момент импульса в классической механике.

    Момент импульса – это физическая величина, характеризующая вращательное движение, точнее, количество вращательного движения.

    В классической механике момент импульса определяется как векторное произведение импульса частицы на ее радиус вектор:

    По аналогии с классической механикой спин характеризует вращение частиц. Их представляют в виде волчков, вращающихся вокруг оси. Если частица имеет заряд, то, вращаясь, она создает магнитный момент и явлеятся своего рода магнитом.

    Однако данное вращение нельзя трактовать классически. Все частицы помимо спина обладают внешним или орбитальным моментом импульса, характеризующим вращение частицы относительно какой-то точки. Например, когда частица движется по круговой траектории (электрон вокруг ядра).


    Спин же является собственным моментом импульса , то есть характеризует внутреннее вращательное состояние частицы вне зависимости от внешнего орбитального момента импульса. При этом спин не зависит от внешних перемещений частицы .

    Представить, что же там вращается внутри частицы, невозможно. Однако факт остается фактом – для заряженных частиц с разнонаправленными спинами траектории движения в магнитном поле будут различны.

    Спиновое квантовое число

    Для характеристики спина в квантовой физике введено спиновое квантовое число.

    Спиновое квантовое число – одно из квантовых чисел, присущих частицам. Часто спиновое квантовое число называют просто спином. Однако следует понимать, что спин частицы (в понимании собственного момента импульса) и спиновое квантовое число – это не одно и то же. Спиновое число обозначается буквой J и принимает ряд дискретных значений, а само значение спина пропорционально приведенной постоянной Планка:

    Бозоны и фермионы

    Разным частицам присущи разные спиновые числа. Так, главное отличие состоит в том, что одни обладают целым спином, а другие – полуцелым. Частицы обладающие целым спином называются бозонами, а полуцелым – фермионами.

    Бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – Ферми-Дирака. В ансамбле частиц, состоящем из бозонов, любое их количество может находиться в одинаковом состоянии. С фермионами все наоборот – наличие двух тождественных фермионов в одной системе частиц невозможно.


    Бозоны: фотон, глюон, бозон Хиггса. - в отдельной статье.

    Фермионы: электрон, лептон, кварк

    Попробуем представить, чем отличаются частицы с разными спиновыми числами на примерах из макромира. Если спин объекта равен нулю, то его можно представить в виде точки. Со всех сторон, как ни вращай этот объект, он будет одинаков. При спине равном 1 поворот объекта на 360 градусов возвращает его в состояние, идентичное первоначальному состоянию.

    Например, карандаш, заточенный с одной стороны. Спин равный 2 можно представить в виде карандаша, заточенного с двух сторон - при повороте такого карандаша на 180 градусов мы не заметим никаких изменений. А вот полуцелый спин равный 1/2 представляется объектом, для возвращения которого в первоначальное состояние нужно соверщить оборот в 720 градусов. Примером может служить точка, движущаяся по листу Мебиуса.


    Итак, спин - квантовая характеристика элементарных частиц, которая служит для описания их внутреннего вращения, момент импульса частицы, не зависящий от ее внешних перемещений.

    Надеемся, что вы осилите эту теорию быстро и сможете при случае применить знания на практике. Ну а если задачка по квантовой механике оказалось непосильно сложной или не можете не забывайте о студенческом сервисе , специалисты которого готовы прийти на выручку. Учитывая, что сам Ричард Фейнман сказал, что "в полной мере квантовую физику не понимает никто", обратиться за помощью к опытным специалистам – вполне естественно!

    При изучении спектра атома водорода обнаружили, что они имеют дуплетную структуру (каждая спектральная линия расщеплена на две полоски). Чтобы объяснить это явление предположили, что электрон обладает собственным механическим моментом импульса – спином (). Первоначально спин связывали с вращением электрона вокруг своей оси. Впоследствии выяснилось, что это ошибочно. Спин – это внутреннее квантовое свойство электрона – у него нет классического аналога. Спин квантуется по закону:

    ,

    где - спиновое квантовое число.

    По аналогии с орбитальным моментом импульса, проекция
    спина квантуется так, что векторможет принимать
    ориентаций. Так как спектральная линия расщепляется только на две части, то ориентацийтолько две:
    , отсюда
    . Проекция спина на выделенное направление определяется выражением:

    ,

    где - магнитное квантовое число. Оно может иметь только два значения
    .

    Таким образом, опытные данные привели к необходимости введения спина. Поэтому для полного описания состояния электрона в атоме необходимо наряду с главным, орбитальным и магнитным квантовыми числами задавать еще магнитное спиновое квантовое число.

    Принцип Паули. Распределение электронов в атоме по состояниям.

    Состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами:

    (
    1, 2, 3,…) – квантует энергию,

    (
    0, 1, 2,…,
    ) – квантует орбитальный механический момент,

    (
    0,
    ,
    ,…,
    ) – квантует проекцию момента импульса на заданное направление,

    (
    ) – квантует проекцию спина на заданное направление
    .

    С возрастанием растет энергия. В нормальном состоянии атома электроны находятся на самых низких энергетических уровнях. Казалось бы, что все они должны быть в состоянии 1s. Но опыт показывает, что это не так.

    Швейцарский физик В.Паули сформулировал принцип: в одном и том же атоме не может быть двух электронов с одинаковыми квантовыми числами ,,
    ,. То есть два электрона должны отличаться по крайней мере значениями одного квантового числа.

    Значению соответствуетсостояний, отличающихся значениямии
    . Но ещеимеет два значения
    и
    , значит всего
    состояний. Поэтому в состояниях с заданныммогут находиться
    электронов. Совокупность электронов с одинаковымназывается слоем, а с одинаковымии- оболочкой.

    Поскольку орбитальное квантовое число принимает значения отдо
    , число оболочек в слое равно. Количество электронов в оболочке определяется магнитным и спиновым квантовыми числами: максимальное число электронов в оболочке с заданнымравно
    . Обозначение слоев и распределение электронов по слоям и оболочкам представлены в таблице 1.

    Максимальное число электронов в оболочках

    Макс. число электронов в слое






    Пользуясь распределением электронов по состояниям можно объяснить периодический закон Менделеева. Каждый последующий атом имеет на один электрон больше, располагается он в состоянии с возможно меньшей энергией.

    Периодическая система элементов начинается с простейшего атома водорода. Его единственный электрон находится в состоянии 1s, характеризуемом квантовыми числами
    ,
    и
    (ориентация спина произвольна).

    В атоме
    два электрона находятся в 1sсостоянии с антипараллельными спинами. На атоме
    заканчивается заполнениеK-слоя, что соответствует завершению 1 периода Периодической системы Менделеева.

    У атома
    3 электрона. Согласно принципу Паули третий электрон уже не может разместиться в целиком заполненном слое К и занимает наинизшее энергетическое состояние с
    (L-слой), то есть 2sсостояние. Электронная конфигурация для атома
    : 12. Атомом
    начинается 2 период Периодической системы Менделеева. Заканчивается 2 период инертным газом неоном. У атома неона полностью заполнена 2pоболочка и полностью заполнен слойL.

    Одиннадцатый электрон
    размещается вMслое (
    ), занимая наименьшее состояние 3s. Электронная конфигурация для
    : 1223. Электрон 3s(как и 2sу лития) является валентным, поэтому свойства
    подобны свойствам
    .
    завершает 3 период. Его электронная конфигурация
    : 12233. Начиная с атома калия в застройке электронных оболочек происходит отклонение. Вместо заполнения 3dоболочки, заполняется сначала 4s(
    : 122334). Это происходит потому, что оболочка 4sэнергетически выгоднее, ближе расположена к ядру, чем 3d. После заполнения 4sзаполняется 3d, а затем 4р оболочка, которая дальше от ядра, чем 3d.

    С такими отклонениями приходится сталкиваться и дальше. Оболочка 4f, которая содержит 14 электронов, начинает заполняться после того, как заполняются 5s, 5p, 6s. В итоге у элементов 58-71 добавляющиеся электроны садятся в 4fсостояния, а внешние электронные оболочки у этих элементов одинаковы. Поэтому их свойства близки. Эти элементы называют лантанидами. Аналогично близки по свойствам актиниды (90-103), где заполняется 5fоболочка при неизменном 7.

    Таким образом, открытая Менделеевым периодичность в химических свойствах элементов объясняется повторяемостью в структуре внешних оболочек у атомов родственных элементов.

    Валентность химического элемента равна числу электронов в sили р оболочке с максимальнымn. Еслиs,p,d,… оболочки полностью заполнены, то их спины скомпенсированы. Такие элементы являются диамагнетиками. Если оболочки не полностью заполнены, то имеются не скомпенсированные спины. Это парамагнетики.



Похожие статьи
 
Категории