Теория ошибок. Абсолютная погрешность измерений

23.09.2019

Cтраница 1


Погрешность метода - это составляющая погрешности измерения, происходящая от несовершенства метода измерений.  

Погрешность метода Е представляет собой ошибку, происходящую от замены точного алгоритма решения приближенным. Поэтому метод вычислений должен быть выбран так, чтобы погрешность его на последнем шаге вычислений не превышала заданной величины.  

Погрешность метода не превосходит полутора делении. Поскольку число зубьев делительного колеса станка некратно числу пазов в диске датчика то в момент подачи сигнала червяк делительной передачи станка оказывается в различных угловых положениях. Это создает возможность определить суммарную точность делительной передачи, а при необходимости выделить также и погрешность колеса и червяка. Для этого применяют методы гармонического анализа. Если датчик стола имеет 40 пазов, то могут быть рассчитаны амплитуды и фазы 19 гармоник, по которым выясняют звенья цепи, являющиеся источниками погрешностей, или может быть настроено коррекционное устройство.  

Погрешность метода, естественно, не учитывается, так как в обоих случаях метод измерения один и тот же.  

Погрешность метода возникает вследствие недостаточной разработанности теории тех явлений, которые положены в основу измерения, и тех соотношений, которые используются для оценки измеряемой величины.  

Погрешность метода Е представляет собой ошибку, происходящую от замены точного алгорифма решения приближенным. Поэтому метод вычислений должен быть выбран так, чтобы погрешность его на последнем шаге вычислений не превышала заданной величины.  


Погрешность метода оценивается в 1 % измеряемой влажности. Градуиро-вочные зависимости позволяют оценить диапазон измеряемых влажностей величиной от 0 до 20 %; при больших влажностях наличие пленки конденсата значительно завышает результаты измерения. Метод неприменим в потоках малой скорости из-за значительных ошибок, вносимых достаточно толстой пленкой на стенках камеры датчика. Целесообразный диапазон рабочих скоростей потока влажного пара составляет М0 3 - г - I. К недостаткам метода следует отнести сложность аппаратуры и зондов, а также необходимость корректировки нуля прибора с течением времени.  

Погрешность метода при других комбинациях граничных условий будет находиться в пределах, представленных таблицей 7.2. При этом всегда соблюдается соответствие: если нагрузка кусочно-непрерывная функция, то результаты метода больше эталонных, если нагрузка сосредоточенная, то - меньше. Очевидно, это связано с тем, что один член разложения описывает кусочно-непрерывную нагрузку с избытком, а сосредоточенную - с недостатком.  

Погрешность метода равна 5 мкг азота.  

Погрешность метода иначе называют теоретической погрешностью.  

Погрешность метода определяется точностью измерения расстояния от поверхности тела до проксимальной поверхности печени, которое измерялось ультразвуковым методом.  

ВВЕДЕНИЕ

Любые измерения, как бы тщательно их ни выполняли, сопровождаются погрешностями (ошибками), т. е. отклонениями измеренных величин от их истинного значения. Это объясняется тем, что в процессе измерений непрерывно меняются условия: состояние внешней среды, мерного прибора и измеряемого объекта, а также внимание исполнителя. Поэтому при измерении величины всегда получают ее приближенное значение, точность которого требуется оценить. Возникает и другая задача: выбрать прибор, условия и методику, чтобы выполнить измерения с заданной точностью. Эти задачи помогает решить теория ошибок, которая изучает законы распределения погрешностей, устанавливает критерии оценки и допуски к точности измерений, способы определения вероятнейшего значения определяемой величины, правила предвычисления ожидаемых точностей.

12.1. ИЗМЕРЕНИЯ И ИХ КЛАССИФИКАЦИЯ

Измерением называют процесс сравнения измеряемой величины с другой, принятой за единицу измерения известной величиной.
Все величины, с которыми мы имеем дело, подразделяют на измеренные и вычисленные. Измеренной величиной называют ее приближенное значение, найденное путем сравнения с однородной единицей меры. Так, последовательно укладывая землемерную ленту по заданному направлению и подсчитывая число уложений, находят приближенное значение длины участка.
Вычисленной величиной называют ее значение, определенное по другим измеренным величинам, функционально с ней связанным. Например, площадь участка прямоугольной формы есть произведение его измеренных длины и ширины.
Для обнаружения промахов (грубых ошибок) и повышения точности результатов одну и ту же величину измеряют несколько раз. По точности такие измерения подразделяют на равноточные и неравноточные. Равноточные - однородные многократные результаты измерения одной и той же величины, выполненные одним и тем же прибором (или разными приборами одного и того же класса точности), одинаковыми способом и числом приемов, в идентичных условиях. Неравноточные - измерения, выполненные при несоблюдении условий равноточности.
При математической обработке результатов измерений большое значение имеет число измеренных величин. Например, чтобы получить величину каждого угла треугольника, достаточно измерить лишь два из них - это и будет необходимое число величин. В общем случае для решения любой топографо-геодезической задачи необходимо измерить некоторое минимальное число величин, обеспечивающее решение поставленной задачи. Их называют числом необходимых величин или измерений. Но чтобы судить о качестве измерений, проконтролировать их правильность и повысить точность результата, измеряют и третий угол треугольника - избыточный . Числом избыточных величин (k ) называют разность между числом всех измеренных величин (п ) и числом необходимых величин (t ):

k = п - t

В топографо-геодезической практике избыточные измеренные величины обязательны. Они позволяют обнаруживать ошибки (погрешности) в измерениях и вычислениях и повышают точность определяемых величин.

По физическому исполнению измерения могут быть прямые, косвенные и дистанционные.
Прямые измерения являются простейшими и в историческом плане первыми видами измерений, например, измерение длин линий землемерной лентой или рулеткой.
Косвенные измерения основываются на использовании некоторых математических зависимостей между искомыми и непосредственно измеряемыми величинами. Например, площадь прямоугольника на местности определяют, измерив длины его сторон.
Дистанционные измерения основываются на использовании ряда физических процессов и явлений и, как правило, связаны с использованием современных технических средств: светодальномеров, электронных тахеометров, фототеодолитов и т.д.

Измерительные приборы, используемые в топографо-геодезическом производстве, можно разделить на три основных класса :

  • высокоточные (прецизионные);
  • точные;
  • технические.

12.2. ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

При многократном измерении одной и той же величины каждый раз получают несколько отличающиеся результаты, как по абсолютной величине, так и по знакам, каким бы опытом не обладал исполнитель и какими бы высокоточными приборами он не пользовался.
Погрешности различают: грубые, систематические и случайные.
Появление грубых погрешностей (промахов ) связано с серьезными ошибками при производстве измерительных работ. Эти ошибки легко выявляются и устраняются в результате контроля измерений.
Систематические погрешности входят в каждый результат измерений по строго определенному закону. Они обусловлены влиянием конструкции измерительных приборов, погрешностями градуировки их шкал, износом и т. д. (инструментальные погрешности) иливозникают из-за недоучета условий измерений и закономерностей их изменений, приближенности некоторых формул и др. (методические погрешности). Систематические погрешности делятся на постоянные (неизменные по знаку и вели чине) и переменные (изменяющие свою величину от одного измерения к другому по определенному закону).
Такие погрешности заранее определимы и могут быть сведены к необходимому минимуму путем введения соответствующих поправок.
Например , заранее может быть учтено влияние кривизны Земли на точность определения вертикальных расстояний, влияние температуры воздуха и атмосферного давления при определении длин линий светодальномерами или электронными тахеометрами, заранее можно учесть влияние рефракции атмосферы и т. д.
Если не допускать грубых погрешностей и устранять систематические, то качество измерений будет определяться только случайными погрешностями. Эти погрешности неустранимы, однако их поведение подчиняется законам больших чисел. Их можно анализировать, контролировать и сводить к необходимому минимуму.
Для уменьшения влияния случайных погрешностей на результаты измерений прибегают к многократным измерениям, к улучшению условий работы, выбирают более совершенные приборы, методы измерений и осуществляют тщательное их производство.
Сопоставляя ряды случайных погрешностей равноточных измерений можно обнаружить, что они обладают следующими свойствами:
а) для данного вида и условий измерений случайные погрешности не могут превышать по абсолютной величине некоторого предела;
б) малые по абсолютной величине погрешности появляются чаще больших;
в) положительные погрешности появляются так же часто, как и равные им по абсолютной величине отрицательные;
г) среднее арифметическое из случайных погрешностей одной и той же величины стремится к нулю при неограниченном увеличении числа измерений.
Распределение ошибок, соответствующее указанным свойствам, называется нормальным (рис. 12.1).

Рис. 12.1. Кривая нормального распределения случайных погрешностей Гаусса

Разность между результатом измерения некоторой величины (l ) и ее истинным значением (X ) называют абсолютной (истинной) погрешностью .

Δ = l - X

Истинное (абсолютно точное) значение измеряемой величины получить невозможно, даже используя приборы самой высокой точности и самую совершенную методику измерений. Лишь в отдельных случаях может быть известно теоретическое значение величины. Накопление погрешностей приводит к образованию расхождений между результатами измерений и действительными их значениями.
Разность суммы практически измеренных (или вычисленных) величин и теоретического ее значения называется невязкой . Например, теоретическая сумма углов в плоском треугольнике равна 180º, а сумма измеренных углов оказалась равной 180º02"; тогда погрешность суммы измеренных углов составит +0º02". Эта погрешность будет угловой невязкой треугольника.
Абсолютная погрешность не является, полным показателем точности выполненных работ. Например, если некоторая линия, фактическая длина которой составляет 1000 м , измерена землемерной лентой с ошибкой 0,5 м , а отрезок длиною 200 м - с ошибкой 0,2 м , то, несмотря на то, что абсолютная погрешность первого измерения больше второго, все же первое измерение было выполнено с точностью в два раза более высокой. Поэтому вводят понятие относительной погрешности :

Отношение абсолютной погрешности измеряемой величины Δ к измеренной величине l называют относительной погрешностью .

Относительные погрешности всегда выражаются дробью с числителем, равным единице (аликвотная дробь). Так, в приведенном выше примере относительная погрешность первого измерения составляет

а второго

12.3 МАТЕМАТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ РАВНОТОЧНЫХ ИЗМЕРЕНИЙ ОДНОЙ ВЕЛИЧИНЫ

Пусть некоторая величина с истинным значением X измерена равноточно n раз и получены результаты: l 1 , l 2 , l 3 ,l i (i = 1, 2, 3, … n ), которые часто называют рядом измерений. Требуется найти наиболее надежное значение измеренной величины, которое называют вероятнейшим , и оценить точность результата.
В теории погрешностей наиболее вероятным значением для ряда равноточных результатов измерений принимают среднее арифметическое , т. е.

(12.1)

При отсутствии систематических погрешностей арифметическое среднее по мере неограниченного возрастания числа измерений стремится к истинному значению измеряемой величины.
Чтобы усилить влияние более крупных погрешностей на результат оценки точности ряда измерений, пользуются среднеквадратической погрешностью (СКП ). Если известно истинное значение измеряемой величины, а систематическая погрешность пренебрежимо мала, то средняя квадратическая погрешность (m ) отдельного результата равноточных измерений определяется по формуле Гаусса:

m = (12.2) ,

где Δ i - истинная погрешность.

В геодезической практике истинное значение измеряемой величины в большинстве случаев заранее неизвестно. Тогда среднюю квадратическую погрешность отдельного результата измерений вычисляют по вероятнейшим погрешностям (δ ) отдельных результатов измерений (l i ); по формуле Бесселя:

m = (12.3)

Где вероятнейшие погрешности (δ i ) определяются как отклонение результатов измерений от арифметического среднего

δ i = l i - µ

Часто рядом с вероятнейшим значением величины записывают и ее среднюю квадратическую погрешность (m ), например 70°05" ± 1". Это означает, что точное значение угла может быть больше или меньше указанного на 1". Однако эту минуту нельзя ни добавить к углу, ни вычесть из него. Она характеризует лишь точность получения результатов при данных условиях измерений.

Анализ кривой нормального распределения Гаусса показывает, что при достаточно большом числе измерений одной и той же величины случайная погрешность измерения может быть:

  • больше средней квадратической m в 32 случаях из 100;
  • больше удвоенной средней квадратической 2m в 5 случаях из 100;
  • больше утроенной средней квадратической 3m в 3 случаях из 1000.

Маловероятно, чтобы случайная погрешность измерения оказалась больше утроенной средней квадратической, поэтому утроенную среднюю квадратическую погрешность считают предельной:

Δ пред. = 3m

Предельной погрешностью называется такое значение случайной погрешности, появление которого при данных условиях измерений маловероятно.

В качестве предельной также принимают среднюю квадратическую погрешность, равную

Δ пред = 2,5m ,

С вероятностью ошибки, равной порядка 1%.

Средняя квадратическая погрешность суммы измеренных величин

Квадрат средней квадратической погрешности алгебраической суммы аргумента равен сумме квадратов средних квадратических погрешностей слагаемых

m S 2 = m 1 2 + m 2 2 + m 3 2 + .....+ m n 2

В частном случае, когда m 1 = m 2 = m 3 = m n = m для определения средней квадратической погрешности арифметической средней пользуются формулой

m S =

Средняя квадратическая погрешность алгебраической суммы равноточных измерений в раз больше средней квадратической погрешности одного слагаемого.

Пример.
Если измерено 9 углов 30-секундным теодолитом, то средняя квадратическая погрешность угловых измерений составит

m угл = 30 " = ±1,5"

Средняя квадратическая погрешность арифметического среднего
(точность определения среднего арифметического)

Средняя квадратическая погрешность арифметического среднего (m µ ) в раз меньше среднего квадратического одного измерения.
Это свойство средней квадратической погрешности арифметического среднего позволяет повысить точность измерений путем увеличения числа измерений .

Например , требуется определить величину угла с точностью ± 15 секунд при наличии 30-секундного теодолита.

Если измерить угол 4 раза (n ) и определить арифметическое среднее, то средняя квадратическая погрешность арифметического среднего (m µ ) составит ± 15 секунд.

Средняя квадратическая погрешность арифметического среднего ( m µ ) показывает, в какой мере снижается влияние случайных погрешностей при многократных измерениях.

Пример
Произведено 5-кратное измерение длины одной линии.
По результатам измерений вычислить: вероятнейшее значение ее длины L (среднее арифметическое); вероятнейшие погрешности (отклонения от среднего арифметического); среднюю квадратическую погрешность одного измерения m ; точность определения среднего арифметического , и вероятнейшее значение длины линии с учетом среднеквадратической погрешности среднего арифметического (L ).

Обработка результатов измерения расстояния (пример)

Таблица 12.1.

Номер измерения

Результат измерения,
м

Вероятнейшие погрешности d i , см

Квадрат вероятнейшей погрешности, см 2

Характеристика
точности

m =±= ±19 см
m µ = 19 см/= ±8 см

Σd i = 0

d i ]2 = 1446

L = (980,65 ±0,08) м

12.4. ВЕСА РЕЗУЛЬТАТОВ НЕРАВНОТОЧНЫХ ИЗМЕРЕНИЙ

При неравноточных измерениях, когда результаты каждого измерения нельзя считать одинаково надежными, уже нельзя обойтись определением простого арифметического среднего. В таких случаях учитывают достоинство (или надежность) каждого результата измерений.
Достоинство результатов измерений выражают некоторым числом, называемым весом этого измерения . Очевидно, что арифметическое среднее будет иметь больший вес по сравнению с единичным измерением, а измерения, выполненные при использовании более совершенного и точного прибора, будут иметь большую степень доверия, чем те же измерения, выполненные прибором менее точным.
Поскольку условия измерений определяют различную величину средней квадратической погрешности, то последнюю и принято принимать в качестве основы оценки весовых значений, проводимых измерений. При этом веса результатов измерений принимают обратно пропорциональными квадратам соответствующих им средних квадратических погрешностей .
Так, если обозначить через р и Р веса измерений, имеющие средние квадратические погрешности соответственно m и µ , то можно записать соотношение пропорциональности:

Например, если µ средняя квадратическая погрешность арифметического среднего, а m - соответственно, одного измерения, то, как следует из

можно записать:

т. е. вес арифметического среднего в n раз больше веса единичного измерения .

Аналогичным образом можно установить, что вес углового измерения, выполненного 15-секундным теодолитом, в четыре раза выше веса углового измерения, выполненного 30-секундным прибором.

При практических вычислениях обычно вес одной какой-либо величины принимают за единицу и при этом условии вычисляют веса остальных измерений. Так, в последнем примере если принять вес результата углового измерения 30-секундным теодолитом за р = 1, то весовое значение результата измерения 15-секундным теодолитом составит Р = 4.

12.5. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ РЕЗУЛЬТАТОВ ПОЛЕВЫХ ИЗМЕРЕНИЙ И ИХ ОБРАБОТКЕ

Все материалы геодезических измерений состоят из полевой документации, а также документации вычислительных и графических работ. Многолетний опыт производства геодезических измерений и их обработки позволил разработать правила ведения этой документации.

Оформление полевых документов

К полевым документам относят материалы поверок геодезических приборов, журналы измерений и бланки специальной формы, абрисы, пикетажные журналы. Вся полевая документация считается действительной только в подлиннике. Она составляется в единственном экземпляре и в случае утраты может быть восстановлена лишь повторными измерениями, что практически не всегда возможно.

Правила ведения полевых журналов сводятся к следующим.

1. Заполнять полевые журналы следует аккуратно, все цифры и буквы должны быть записаны четко и разборчиво.
2. Исправление цифр и их подчистка, а также написание цифры по цифре не допускаются.
3. Ошибочные записи отсчетов зачеркиваются одной чертой и справа указывается «ошибочно» или «описка», а правильные результаты надписываются сверху.
4. Все записи в журналах ведутся простым карандашом средней твердости, чернилами или шариковой ручкой; использование для этого химических или цветных карандашей не рекомендуется.
5. При выполнении каждого вида геодезических съемок записи результатов измерений делают в соответствующих журналах установленной формы. До начала работ страницы журналов пронумеровывают и их число заверяет руководитель работ.
6. В процессе полевых работ страницы с забракованными результатами измерений зачеркивают по диагонали одной чертой, указывают причину брака и номер страницы, содержащей результаты повторных измерений.
7. В каждом журнале на заглавном листе заполняют сведения о геодезическом приборе (марка, номер, средняя квадратическая погрешность измерения), записывают дату и время наблюдений, метеоусловия (погода, видимость и т. п.), фамилии исполнителей, приводят необходимые схемы, формулы и примечания.
8. Журнал должен заполняться таким образом, чтобы другой исполнитель, не участвующий в полевых работах, мог безошибочно выполнить последующую обработку результатов измерений. При заполнении полевых журналов следует придерживаться следующих форм записи:
а) числа в столбцах записываются так, чтобы все цифры соответствующих разрядов располагались одна под другой без смещения.
б) все результаты измерений, выполненных с одинаковой точностью, записывают с одинаковым числом знаков после запятой.

Пример
356,24 и 205,60 м — правильно,
356,24 и 205,6 м — неправильно;
в) значения минут и секунд при угловых измерениях и вычислениях всегда записывают двузначным числом.

Пример
127°07"05" , а не 127º7"5" ;

г) в числовых значениях результатов измерений записывают такое количество цифр, которое позволяет получить отсчетное устройство соответствующего средства измерений. Например, если длина линии измеряется рулеткой с миллиметровыми делениями и отсчитывание проводится с точностью до 1 мм, то отсчет должен быть записан 27,400 м, а не 27,4 м. Или если угломерный прибор позволяет отсчитывать только целые минуты, то отсчет запишется как 47º00", а не 47º или 47º00"00».

12.5.1. Понятие о правилах геодезических вычислений

К обработке результатов измерений приступают после проверки всех полевых материалов. При этом следует придерживаться выработанных практикой правил и приемов, соблюдение которых облегчает труд вычислителя и позволяет ему рационально использовать вычислительную технику и вспомогательные средства.
1. Перед началом обработки результатов геодезических измерений следует разработать подробную вычислительную схему, в которой указывается последовательность действий, позволяющая получить искомый результат наиболее простым и быстрым путем.
2. С учетом объема вычислительных работ выбирать наиболее оптимальные средства и способы вычислений, требующие наименьших затрат при обеспечении необходимой точности.
3. Точность результатов вычислений не может быть выше точности измерений. Поэтому заранее следует задаваться достаточной, но не излишней точностью вычислительных действий.
4. При вычислениях нельзя пользоваться черновиками, так как переписывание цифрового материала отнимает много времени и часто сопровождается ошибками.
5. Для записей результатов вычислений рекомендуется использование специальных схем, бланков и ведомостей, определяющих порядок расчетов и обеспечивающих промежуточный и общий контроль.
6. Без контроля вычисление не может считаться законченным. Контроль можно выполнять, используя другой ход (способ) решения задачи либо выполняя повторные вычисления другим исполнителем (в «две руки»).
7. Вычисления всегда заканчиваются определением погрешностей и обязательным их сравнением с допусками, предусматриваемыми соответствующими инструкциями.
8. Особые требования при вычислительных работах предъявляются к аккуратности и четкости записи чисел в вычислительных бланках, поскольку небрежности в записях приводят к ошибкам.
Как и в полевых журналах, при записях столбцов чисел в вычислительных схемах цифры одинаковых разрядов следует располагать одна под другой. При этом дробную часть числа отделяют запятой; многоразрядные числа желательно записывать с интервалами, например: 2 560 129,13. Записи вычислений следует вести только чернилами прямым шрифтом; ошибочные результаты аккуратно перечеркивать и сверху писать исправленные значения.
При обработке материалов измерений следует знать, с какой точностью должны быть получены результаты вычислений, чтобы не оперировать с излишним числом знаков; если окончательный результат вычисления получается с большим числом знаков, чем это необходимо, то производят округление чисел.

12.5.2. Округление чисел

Округлить число до n знаков - значит сохранить в нем первые n значащих цифр.
Значащие цифры числа - это все его цифры от первой слева, отличной от нуля, до последней записанной цифры справа. При этом нули справа не считаются значащими цифрами, если они заменяют неизвестные цифры или поставлены вместо других цифр при округлении данного числа.
Например, число 0,027 имеет две значащие цифры, а число 139,030 - шесть значащих цифр.

При округлении чисел следует придерживаться следующих правил.
1. Если первая из отбрасываемых цифр (считая слева направо) меньше 5, то последняя оставляемая цифра сохраняется без изменения.
Например, число 145,873 после округления до пяти значащих цифр будет 145,87.
2. Если первая из отбрасываемых цифр больше 5, то последняя оставляемая цифра увеличивается на единицу.
Например, число 73,5672 после округления его до четырех значащих цифр будет 73,57.
3. Если последней цифрой округляемого числа является цифра 5 и она должна быть отброшена, то предшествующую ей цифру в числе увеличивают на единицу только в том случае, если она нечетная (правило четной цифры).
Например, числа 45,175 и 81,325 после округления до 0,01 будут соответственно 45,18 и 81,32.

12.5.3. Графические работы

Ценность графических материалов (планов, карт и профилей), являющихся конечным результатом геодезических съемок, в значительной мере определяется не только точностью полевых измерений и правильностью вычислительной их обработки, но и качеством графического исполнения. Графические работы должны выполняться с помощью тщательно проверенных чертежных инструментов: линеек, треугольников, геодезических транспортиров, циркулей-измерителей, остро отточенных карандашей (Т и ТМ) и т. п. Большое влияние на качество и производительность чертежных работ оказывает организация рабочего места. Чертежные работы должны выполняться на листах качественной чертежной бумаги, закрепленных на ровном столе либо на специальной чертежной доске. Составленный карандашный оригинал графического документа после тщательной проверки и корректировки оформляют в туши в соответствии с установленными условными знаками.

Вопросы и задания для самоконтроля

  1. Что значит выражение: «измерить какую-либо величину»?
  2. Как классифицируют измерения?
  3. Как классифицируют измерительные приборы?
  4. Как классифицируют результаты измерений по точности?
  5. Какие измерения называют равноточными?
  6. Что означают понятия: «необходимое и избыточное число измерений»?
  7. Как классифицируют ошибки измерения?
  8. Чем обусловлены систематические погрешности?
  9. Какими свойствами обладают случайные погрешности?
  10. Что называют абсолютной (истинной) погрешностью?
  11. Что называют относительной погрешностью?
  12. Что называют в теории погрешностей средним арифметическим?
  13. Что называют в теории погрешностей средней квадратической погрешностью?
  14. Чему равна предельная средняя квадратическая погрешность?
  15. Как соотносятся средняя квадратическая погрешность алгебраической суммы равноточных измерений и средняя квадратическая погрешность одного слагаемого?
  16. Как соотносятся средняя квадратическая погрешность арифметического среднего и средняя квадратическая погрешность одного измерения?
  17. Что показывает средняя квадратическая погрешность арифметического среднего?
  18. Какай параметр принимают в качестве основы оценки весовых значений?
  19. Как соотносятся вес арифметического среднего и вес единичного измерения?
  20. Какие правила приняты в геодезии для ведения полевых журналов?
  21. Перечислите основные правила геодезических вычислений.
  22. Округлите до 0,01 числа 31,185 и 46,575.
  23. Перечислите основные правила выполнения графических работ.

Термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов . При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность . Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал , доверительная вероятность, стандартная ошибка).

В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».

Определение погрешности

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

  • Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
  • Средняя квадратическая погрешность:
  • Средняя квадратическая погрешность среднего арифметического:

Классификация погрешностей

По форме представления

  • Абсолютная погрешность - ΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины X m e a s . При этом равенство:

ΔX = | X t r u e X m e a s | ,

где X t r u e - истинное значение, а X m e a s - измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина X m e a s распределена по нормальному закону , то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение . Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

  • Относительная погрешность - отношение абсолютной погрешности к тому значению, которое принимается за истинное:

Относительная погрешность является безразмерной величиной, либо измеряется в процентах .

  • Приведенная погрешность - относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

где X n - нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

Если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то X n определяется равным верхнему пределу измерений;
- если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведенная погрешность - безразмерная величина (может измеряться в процентах).

По причине возникновения

  • Инструментальные / приборные погрешности - погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
  • Методические погрешности - погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
  • Субъективные / операторные / личные погрешности - погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.

Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.

Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведенных основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где n = 1; 0; -1; -2 и т.д.

По характеру проявления

  • Случайная погрешность - погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т.п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).
  • Систематическая погрешность - погрешность, изменяющаяся во времени по определенному закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т.п.), неучтёнными экспериментатором.
  • Прогрессирующая (дрейфовая) погрешность - непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
  • Грубая погрешность (промах) - погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора, если произошло замыкание в электрической цепи).

По способу измерения

  • Погрешность прямых измерений
  • Погрешность косвенных измерений - погрешность вычисляемой (не измеряемой непосредственно) величины:

Если F = F (x 1 ,x 2 ...x n ) , где x i - непосредственно измеряемые независимые величины, имеющие погрешность Δx i , тогда:

См. также

  • Измерение физических величин
  • Система автоматизированного сбора данных со счетчиков по радиоканалу

Литература

  • Назаров Н. Г. Метрология. Основные понятия и математические модели. М.: Высшая школа, 2002. 348 с.
  • Лабораторные занятия по физике. Учебное пособие/Гольдин Л. Л., Игошин Ф. Ф., Козел С. М. и др.; под ред. Гольдина Л. Л. - М.: Наука. Главная редакция физико-математичекой литературы, 1983. - 704 с.

Wikimedia Foundation . 2010 .

ПОГРЕШНОСТИ ИЗМЕРЕНИЙ ФИЗИЧЕСКИХ ВЕЛИЧИН И

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Измерением называют нахождение значений физических величин опытным путем с помощью специальных технических средств. Измерения бывают прямые и косвенные. При прямом измерении искомое значение физической величины находят непосредственно с помощью измерительных приборов (например, измерение размеров тел с помощью штангенциркуля). Косвенным называют измерение, при котором искомое значение физической величины находят на основании известной функциональной зависимости между измеряемой величиной и величинами, подвергаемыми прямым измерениям. Например, при определении объема V цилиндра измеряют его диаметр D и высоту Н, а затем по формуле p D 2 /4 вычисляют его объем.

Вследствие неточности измерительных приборов и трудности учета всех побочных явлений при измерениях неизбежно возникают погрешности измерений. Погрешностью или ошибкой измерения называют отклонение результата измерения от истинного значения измеряемой физической величины. Погрешность измерения обычно неизвестна, как неизвестно и истинное значение измеряемой величины. Поэтому задача элементарной обработки результатов измерений заключается в установлении интервала, внутри которого с заданной вероятностью находится истинное значение измеряемой физической величины.

Классификация погрешностей измерений

Погрешности разделяют на три вида:

1) грубые или промахи,

2) систематические,

3) случайные .

Грубые погрешности - это ошибочные измерения, возникающие в результате небрежности отсчета по прибору, неразборчивости записи показаний. Например, запись результата 26,5 вместо 2,65; отсчет по шкале 18 вместо 13 и т.д. При обнаружении грубой ошибки результат данного измерения следует сразу отбросить, а само измерение повторить.

Систематические погрешности - ошибки, которые при повторных измерениях остаются постоянными или изменяются по определенному закону. Эти погрешности могут быть обусловлены неправильным выбором метода измерения, несовершенством или неисправностью приборов (например, измерения с помощью прибора, у которого смещен нуль). Для того, чтобы максимально исключить систематические погрешности, следует всегда тщательно анализировать метод измерений, сверять приборы с эталонами. В дальнейшем будем считать, что все систематические погрешности устранены, кроме тех, которые вызваны неточностью изготовления приборов и ошибкой отсчета. Эту погрешность будем называть аппаратурной.

Случайные погрешности - это ошибки, причина которых заранее не может быть учтена. Случайные погрешности зависят от несовершенства наших органов чувств, от непрерывного действия изменяющихся внешних условий (изменение температуры, давления, влажности, вибрация воздуха и т.д.). Случайные погрешности являются неустранимыми, они неизбежно присутствуют во всех измерениях, но их можно оценить, применяя методы теории вероятностей.

Обработка результатов прямых измерений

Пусть в результате прямых измерений физической величины получен ряд ее значений:

x 1 , x 2 , ... x n .

Зная этот ряд чисел, нужно указать значение, наиболее близкое к истинному значению измеряемой величины, и найти величину случайной погрешности. Эту задачу решают на основе теории вероятностей, подробное изложение которой выходит за рамки нашего курса.

Наиболее вероятным значением измеряемой физической величины (близким к истинному) считают среднее арифметическое

. (1)

Здесь x i – результат i–го измерения; n – число измерений. Случайная ошибка измерения может быть оценена величиной абсолютной погрешности D x, которую вычисляют по формуле

, (2)

где t(a ,n) – коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности a . Значение доверительной вероятности a задает сам экспериментатор.

Вероятностью случайного события называется отношение числа случаев, благоприятного для данного события, к общему числу равновозможных случаев. Вероятность достоверного события равна 1, а невозможного - 0.

Значение коэффициента Стьюдента, соответствующее заданной доверительной вероятности a и определенному числу измерений n, находят по табл. 1.

Таблица 1

Число

измерений n

Доверительная вероятность a

0,95

0,98

1,38

12,7

31,8

1,06

0,98

0,94

0,92

0,90

0,90

0,90

0,88

0,84

Из табл. 1 видно, что величина коэффициента Стьюдента и случайная погрешность измерения тем меньше, чем больше n и меньше a . Практически выбирают a =0,95. Однако простое увеличение числа измерений не может свести общую погрешность к нулю, так как любой измерительный прибор дает погрешность.

Поясним смысл терминов абсолютная погрешность D x и доверительная вероятность a , используя числовую ось. Пусть среднее значение измеряемой величины (рис. 1), а вычисленная абсолютная погрешность D x. Отложим D x от справа и слева. Полученный числовой интервал от (- D x) до (+ D x) называется доверительным интервалом . Внутри этого доверительного интервала находится истинное значение измеряемой величины x.

Рис.1

Если измерения той же величины повторить теми же приборами в тех же условиях, то истинное значение измеряемой величины x ист попадет в этот же доверительный интервал, но попадание будет не достоверным, а с вероятностью a .

Вычислив величину абсолютной погрешности D x по формуле (2), истинное значение x измеряемой физической величины можно записать в виде x= ±D x.

Для оценки точности измерения физической величины подсчитывают относительную погрешность , которую обычно выражают в процентах,

. (3)

Таким образом, при обработке результатов прямых измерений необходимо проделать следующее:

1. Провести измерения n раз.

2. Вычислить среднее арифметическое значение по формуле (1).

3. Задать доверительную вероятность a (обычно берут a =0.95).

4. По таблице 1 найти коэффициент Стьюдента, соответствующий заданной доверительной вероятности a и числу измерений n.

5. Вычислить абсолютную погрешность по формуле (2) и сравнить ее с аппаратурной. Для дальнейших вычислений взять ту из них, которая больше.

6. По формуле (3) вычислить относительную ошибку e .

7. Записать окончательный результат

x= ±D x. с указанием относительной погрешности e и доверительной вероятности a .

Обработка результатов косвенных измерений

Пусть искомая физическая величина y связана с другими величинами x 1 , x 2 , ... x k некоторой функциональной зависимостью

Y=f(x 1 , x 2 , ... x k) (4)

Среди величин x 1 , x 2 , ... x k имеются величины, полученные при прямых измерениях, и табличные данные. Требуется определить абсолютную D y и относительную e погрешности величины y.

В большинстве случаев проще сначала вычислить относительную погрешность, а затем – абсолютную. Из теории вероятностей относительная погрешность косвенного измерения

. (5)

Здесь , где - частная производная функции по переменной x i, при вычислении которой все величины, кроме x i , считаются постоянными; D x i – абсолютная погрешность величины x i . Если x i получена в результате прямых измерений, то ее среднее значение и абсолютную погрешность D x вычисляют по формулам (1) и (2). Для всех измеренных величин x i задается одинаковая доверительная вероятность a . Если какие-либо из слагаемых, возводимых в квадрат, в выражении (5) меньше на порядок (в 10 раз) других слагаемых, то ими можно пренебречь. Это нужно учитывать при выборе табличных величин (p , g и др.), входящих в формулу относительной погрешности. Их значение надо выбрать такими, чтобы их относительная погрешность была на порядок меньше наибольшей относительной погрешности.

Запишем конечный результат:

y= ±D y.

Здесь – среднее значение косвенного измерения, полученное по формуле (4) при подстановке в нее средних величин x i ; D y= e .

Обычно в реальных измерениях присутствуют и случайные и систематические (аппаратурные) погрешности. Если вычисленная случайная погрешность прямых измерений равна нулю или меньше аппаратурной в два и большее число раз, то при вычислении погрешности косвенных измерений в расчет должна приниматься аппаратурная погрешность. Если эти погрешности отличаются меньше, чем в два раза, то абсолютная погрешность вычисляется по формуле

.

Рассмотрим пример. Пусть необходимо вычислить объем цилиндра:

. (6)

Здесь D – диаметр цилиндра, H – его высота, измеренная штангенциркулем с ценой деления 0.1 мм. В результате многократных измерений найдем средние значения =10.0 мм и =40.0 мм. Относительную погрешность косвенного измерения объема цилиндра определяем по формуле

, (7)

где D D и D H – абсолютные ошибки прямых измерений диаметра и высоты. Их величины рассчитываем по формуле (2): D D=0.01 мм; D H=0.13 мм. Сравним вычисленные ошибки с аппаратурной, равной цене деления штангенциркуля. D D<0.1, поэтому в формуле (7) подставим вместо D D не 0.01 мм, а 0.1 мм.

Значение p нужно выбрать таким, чтобы относительной ошибкой Dp / p в формуле (7) можно было пренебречь. Из анализа измеренных величин и вычисленных абсолютных ошибок D D и D H видно, что наибольший вклад в относительную ошибку измерения объема вносит ошибка измерения высоты. Вычисление относительной ошибки высоты дает e H =0.01. Следовательно, значение p нужно взять 3.14. В этом случае Dp / p » 0.001 (Dp =3.142-3.14=0.002).

В абсолютной погрешности оставляют одну значащую цифру.

Примечания.

1. Если измерения производят один раз или результаты многократных измерений одинаковы, то за абсолютную погрешность измерений нужно взять аппаратурную погрешность, которая для большинства используемых приборов равна цене деления прибора (более подробно об аппаратурной погрешности см. в разделе “Измерительные приборы”).

2. Если табличные или экспериментальные данные приводятся без указания погрешности, то абсолютную погрешность таких чисел принимают равной половине порядка последней значащей цифры.

Действия с приближенными числами

Вопрос о различной точности вычисления очень важен, так как завышение точности вычисления приводит к большому объему ненужной работы. Студенты часто вычисляют искомую величину с точностью до пяти и более значащих цифр. Следует понимать, что эта точность излишняя. Нет никакого смысла вести вычисления дальше того предела точности, который обеспечивается точностью определения непосредственно измерявшихся величин. Проведя обработку измерений, часто не подсчитывают ошибки отдельных результатов и судят об ошибке приближенного значения величины, указывая количество верных значащих цифр в этом числе.

Значащими цифрами приближенного числа называются все цифры, кроме нуля, а также нуль в двух случаях:

1) когда он стоит между значащими цифрами (например, в числе 1071 – четыре значащих цифры);

2) когда он стоит в конце числа и когда известно, что единица соответствующего разряда в данном числе не имеется. Пример. В числе 5,20 три значащих цифры, и это означает, что при измерении мы учитывали не только единицы, но и десятые, и сотые, а в числе 5,2 – только две значащих цифры, и это значит, что мы учитывали только целые и десятые.

Приближенные вычисления следует производить с соблюдением следующих правил.

1. При сложении и вычитании в результате сохраняют столько десятичных знаков, сколько их содержится в числе с наименьшим количеством десятичных знаков. Например: 0,8934+3,24+1,188=5,3214 » 5,32. Сумму следует округлить до сотых долей, т.е. принять равной 5,32.

2. При умножении и делении в результате сохраняют столько значащих цифр, сколько их имеет приближенное число с наименьшим количеством значащих цифр. Например, необходимо перемножить 8,632 ´ 2,8 ´ 3,53. Вместо этого выражения следует вычислять

8,6 ´ 2,8 ´ 3,5 » 81.

При вычислении промежуточных результатов сохраняют на одну цифру больше, чем рекомендуют правила (так называемая запасная цифра). В окончательном результате запасная цифра отбрасывается. Для уточнения значения последней значащей цифры результата нужно вычислить за ней цифру. Если она окажется меньше пяти, ее следует просто отбросить, а если пять или больше пяти, то, отбросив ее, следует предыдущую цифру увеличить на единицу. Обычно в абсолютной ошибке оставляют одну значащую цифру, а измеренную величину округляют до того разряда, в котором находится значащая цифра абсолютной ошибки.

3. Результат расчета значений функций x n , , lg(x ) некоторого приближенного числа x должен содержать столько значащих цифр, сколько их имеется в числе x . Например: .

Построение графиков

Результаты, полученные в ходе выполнения лабораторной работы, часто важно и необходимо представить графической зависимостью. Для того, чтобы построить график, нужно на основании проделанных измерений составить таблицу, в которой каждому значению одной из величин соответствует определенное значение другой.

Графики выполняют на миллиметровой бумаге. При построении графика значения независимой переменной следует откладывать на оси абсцисс, а значения функции – на оси ординат. Около каждой оси нужно написать обозначение изображаемой величины и указать, в каких единицах она измеряется (рис. 2).

Рис.2

Для правильного построения графика важным является выбор масштаба: кривая занимает весь лист, и размеры графика по длине и высоте получаются приблизительно одинаковыми. Масштаб должен быть простым. Проще всего, если единица измеренной величины (0,1;10;100 и т.д.) соответствует 1, 2 или 5 см. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями откладываемых величин (рис. 2).

Каждое полученное экспериментальное значение наносится на график достаточно заметным образом: точкой, крестиком и т.д.

Погрешности указывают для измеряемых величин в виде отрезков длиной в доверительный интервал, в центре которых расположены экспериментальные точки. Так как указание погрешностей загромождает график, то делается это лишь тогда, когда информация о погрешностях действительно нужна: при построении кривой по экспериментальным точкам, при определении ошибок с помощью графика, при сравнении экспериментальных данных с теоретической кривой (рисунок 2). Часто достаточно указать погрешность для одной или нескольких точек.

Через экспериментальные точки необходимо проводить плавную кривую. Нередко экспериментальные точки соединяют простой ломаной линией. Тем самым как бы указывается, что величины каким-то скачкообразным образом зависят друг от друга. А это является маловероятным. Кривая должна быть плавной и может проходить не через отмеченные точки, а близко к ним так, чтобы эти точки находились по обе стороны кривой на одинаковом от нее расстоянии. Если какая-либо точка сильно выпадает из графика, то это измерение следует повторить. Поэтому желательно строить график непосредственно во время опыта. Тогда график может служить для контроля и улучшения наблюдений.

ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И УЧЕТ ИХ ПОГРЕШНОСТЕЙ

Для прямых измерений физических величин применяют измерительные приборы. Любые измерительные приборы не дают истинного значения измеряемой величины. Это связано, во-первых, с тем, что невозможно точно отсчитать по шкале прибора измеряемую величину, во-вторых, с неточностью изготовления измерительных приборов. Для учета первого фактора вводится погрешность отсчета Δx o , для второго - допускаемая погрешность Δx д . Сумма этих погрешностей образует аппаратурную или абсолютную погрешность прибора Δx :

.

Допускаемую погрешность нормируют государственными стандартами и указывают в паспорте или описании прибора.

Погрешность отсчета обычно берут равной половине цены деления прибора, но для некоторых приборов (секундомер, барометр-анероид) - равной цене деления прибора (так как положение стрелки этих приборов изменяется скачками на одно деление) и даже нескольким делениям шкалы, если условия опыта не позволяют уверенно отсчитать до одного деления (например, при толстом указателе или плохом освещении). Таким образом, погрешность отсчета устанавливает сам экспериментатор, реально отражая условия конкретного опыта.

Если допускаемая погрешность значительно меньше ошибки отсчета, то ее можно не учитывать. Обычно абсолютная погрешность прибора берется равной цене деления шкалы прибора.

Измерительные линейки обычно имеют миллиметровые деления. Для измерения рекомендуется применять стальные или чертежные линейки со скосом. Допускаемая погрешность таких линеек составляет 0,1 мм и ее можно не учитывать, так как она значительно меньше погрешности отсчета, равной ± 0,5 мм. Допускаемая погрешность деревянных и пластмассовых линеек ± 1 мм.

Допускаемая погрешность измерения микрометра зависит от верхнего предела измерения и может составлять ± (3–4) мкм (для микрометров с диапазоном измерения 0–25 мм). За погрешность отсчета принимают половину цены деления. Таким образом, абсолютную погрешность микрометра можно брать равно цене деления, т.е. 0,01 мм.

При взвешивании допускаемая погрешность технических весов зависит от нагрузки и составляет при нагрузке от 20 до 200 г – 50 мг, при нагрузке меньше 20 г – 25 мг.

Погрешность цифровых приборов определяется по классу точности.

1. Методы измерений.

2. Погрешности измерений.

3. Выбор метода и средств измерений.

4. Выбор измерений.

1. Методы измерений . Измерение физической величины может быть осуществлено различными методами (способами), выбор которых в каждом отдельном случае зависит от характера измеряемой величины, от условий измерения, от устройства и принципа действий , а также требуемой точности.

По способу получения числового значения измеряемой величины методы измерения делят на 3 вида:

2. Косвенные

3. Совокупные

Они различаются по характеру использования мер.

К наиболее важным методам, прямых измерений постоянно встречающихся на практике, относятся следующие:

1. Метод непосредственной оценки.

2. Метод сравнения, состоящий из четырех разновидностей:

а) нулевой метод;

б) дифференциальный метод;

в) метод замещения;

г) метод совпадения.

Сущность метода непосредственной оценки Состоит в том, о значение измеряемой величины судят по показанию одного или нескольких приборов прямого преобразования, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемое. Он принадлежит к числу наиболее распространенных в технической практике (в силу своей простоты), и типичным его примером служит измерение электрических величин стрелочными приборами. Точность этого метода обычно ограничивается точностью измерительных приборов. Отличительной особенностью этого метода является то, что мера непосредственного участия в процессе измерения не принимает.

Сущностью метода сравнения является то, что при использовании этих методов измеряемая величина в процессе измерения сравнивается с величиной, воспроизводимой мерой.

Таким образом, отличительной чертой методов сравнения является непосредственное участие меры в процессе измерения. Они различаются по характеру использования мер.

А) Нулевой метод – это метод, при котором результатирующий эффект воздействия измеряемой величины и образцовой меры на прибор сравнения (нулевой индикатор) доводится до нуля. Примерами использования нулевых методов в электротехнике являются мостовые и компенсационные схемы. Нулевые методы значительно сложнее методов непосредственной оценки, требуют значительно большего времени, но зато точность их несравненно выше (0,02% и выше).

Нулевые методы применяются в основном при проверке приборов используемых непосредственной оценке.

Б) Дифференциальный метод – это метод, при котором непосредственно оценивается измерительными приборами разность между измеряемой величиной и образцово мерой или разность производимых ими эффектов.

Аиз-А=а

Аиз – измеряемая величина; А – показание прибора; а – погрешность.

Зная А и измерив а, можно найти Аиз. Точность этого метода тем выше, чем меньше измеряемая разность и с тем большей точностью она измерена (если разность между Аиз и А составляет 1% и измерено с точностью до 1%, то точность измерения составит уже 0,01%).

Дифференциальные методы используются при точных лабораторных измерениях (поверка образцовых сопротивлений, поверка измерительных трансформаторов и др.).

В) Метод замещения . Этот метод заключается в том, что в процессе измерения измеряемая величина Аиз заменяется в измерительной установки известной величиной А, при чем путем измерения величины А, измерительная установка приводится в прежнее состояние, то есть достигаются те же показания приборов, что и при действии величины Аиз. При таких условиях Аиз=.

Г) Метод совпадения . Этот метод заключается в том, что измеряют разность между искомой величиной и образцовой мерой, используя совпадения меток шкал или периодических сигналов. Сущность этого метода можно пояснить на примере определения размера дюйма.

1дюйм= 127/5=254/10=25,4мм

Погрешности измерений.

При осуществлении измерений, вследствие ряда причин, числовое значение измеряемой величины, полученная в результате опыта, является лишь более менее приближенным.

Отклонение результатов измерения от истинного значения измеряемой величины называется Погрешностью измерения .

Верным (истинным) значением Изменяемой величины называют ее значение, свободное от погрешностей измерений.

Действительное значение – это значение, полученное в результате измерения с допустимой погрешностью (ошибкой).

Погрешности измерений можно классифицировать по ряду признаков:

1. По способу числового выражения погрешности измерений делятся на:

А) Абсолютные и б) относительные.

Абсолютной погрешностью Называется разность между измеренным и действительным значением измеряемой величины.

А=Аиз-Аq

За действительные значения измеряемой величины принимаются показания образцового прибора.

Абсолютная погрешность измеряется в единицах измеряемой величины.

Величина обратная по знаку абсолютной погрешности называется поправкой.

σ =-ΔА

Относительной погрешностью Называется отношение абсолютной погрешности к действительному значению измеряемой величины.

β = ΔА/А Д = Аиз – Ад/Ад; или β = ΔА/Ад·100%.

2. По характеру изменения Погрешности измерений делятся на:

А) систематические;

Б) случайные;

В) грубые ошибки (промахи).

Систематическими Называются погрешности, подчиняющие определенному закону или остающиеся в

Процессе измерения постоянными. К ним относятся погрешности, обусловленные неточностью осуществления меры, неправильностью градуировок измерительного прибора, влиянием температуры окружающей среды на меры и измерительные приборы.

Различают следующие разновидности систематических погрешностей:

1. Инструментальные.

2. Погрешности установки прибора.

3. Личные погрешности (субъективные).

4. Погрешности метода (или теоретические).

В зависимости от изменения во времени систематические погрешности делятся на: а) постоянные; б) прогрессивные; в) периодические.

Для учета и исключения систематических погрешностей необходимо располагать, возможно, полными данными о наличии отдельных видов погрешностей и о причинах их возникновения.

Систематические погрешности могут быть исключены или значительно уменьшены устранением источников погрешностей или введением поправок, останавливаемых на основании предварительного изучения погрешностей, путем поверки мер и приборов, используемых при измерении, введением поправочных формул и кривых, выражающих зависимость показаний приборов от внешних условий.

Случайными Называются погрешности, изменение которых не подчиняется какой-либо закономерности. Они обнаруживаются при многократном измерении искомой величины, когда повторные измерения проводятся одинаково тщательно и, казалось бы, при одних и тех же условиях.

Случайные погрешности нельзя исключить опытным путем, но их влияние на результат измерения может быть теоретически учтено путем применения при обработке результатов измерений методов теории вероятности и математической статистики.

Грубые ошибки – это погрешности, существенно превышающие ожидаемые при данных условиях. Примером грубых ошибок могут быть неправильные отсчеты показаний средств измерений. Грубые погрешности измерения выявляются при повторных измерения и должны быть отброшены, как на заслуживающие доверия.

Общие методы повышентя точностсти средств измерений.

Стремясь к созданию более точных средств измерений измерительная тезника выработала ряд общих методов достижения точности, которые можно подразделить на четыре группы:

1. Стабилизация важнейших параметров средств измерений технологическим путем, т. е. путем использования наиболее стабильных деталей, материалов и соответствующей технологии изготовления.

2. Метод пассивной защиты от быстро изменяющихся влияющих величин, т. е. уменьшение случайных погрешностей средств измерений путем применения фильтрации, амортизации, теплоизоляции и т. д.

3. Методы активной защиты от медленно изменяющихся влиящих величин путем стабилизации этих величин.

4. Методы коррекции систематических и прогрессирующих погрешностей и статическая обработка случайных погрешностей.

Повышение точности измерений обычно связано с усложнением аппаратуры и увеличением времени

(большая повторность) измерения. А это не всегда оравдано. Очевидно также нецелесообразность особой точности измерения величин, мало влияющих на числовое значение общего конечного результата.

Так, например, при измерении величин x1, x2 и х3 для определения величины у=х12*х2β*х3γ вряд ли целесообразно добиваться особой точности измерения х1, если показателем степени α =1, β = 2, γ = 3.

Требуемеая точность должна соответствовать задачам и условиям измерений.

Выбор метода и средств измерений.

При выборе метода измерений следует руководствоваться требуемой точностью результатов измерений.

По точности получаемых результатов можно разделить на три группы:

1. Результат измерения должен иметь максимальную возможную при существующем уровне измерительной техники точность.

Такие измерения называют Точными (презиционными). Например, измерения физических констант, эталонный измерения, некоторые спеиальные измерения, относящиеся к максимально точной работе отдельных приборов.

2. Измерения, погрешности результата которых не должена превосходить некоторого заданного значения.

Такие измерения называют Контрольно поверхностными. Они выполняются в поверочных контрольно-измерительных лабораториях такими измерительными средствами и по такой методике, чтобы гарантировать погрешность результата, не превышающую некоторого заранее заданного значения.

3. Измерения, при которых погрешность результата определена характеристиками измерительных устройств.

Такие измерения называют Техническими.

К ним относятся и лабораторные измерения, проводимые при различного рода обработок и исследованиях, и исследованиях, и производственные, и приемно-сдаточные, и эксплутационные измерения, проводимые для обеспечения необходимого режима работы различных объектов и устройств.

Приборы для измерений выбирают по ряду показателей: роду тока, частоты, диапозону измеряемой величины, точности, входным параметрам, степени влияния внешних факторов.

1. Род тока исследуемой цепи определяет принцип действия и систему выбираемого для нее измерительного прибора. (U, I, R на постоянном токе – МЭ, Р-ЭД, точное измерение I, U, P, cosγ вольтметру – ср. Д., измерения средних, действующих значений тока и напряжения в цепях передоваемого тока звуковой и высокой частоты применяют – выпрямительные, тэрмоэлектрические, электронные и электростатические приборы. Мгновнные значения переменных величин измеряют – осцелографами).

2. Номинальная чатота или область частоты измерительного прибора или меры должна соответствовать частоте тока исследуемой цепи.

Чем сильнее отличается частота исследуемой цепи от номинальной частоты прибора или меры, тем больше погрешности измерений.

3. Номинальные пределы прибора или меры не должны превышать верхнего предела измеряемой величины более чем на 25%.

Чем сильнее они разняться, тем менее точны результаты измерений. При заданном классе точности допускается относительная погрешность прибора или меры тем больше, чем меньше измеряемая величина.

4. Классы точности выбранного измерительного прибора или меры должны быть такими, чтобы допустимые основные погрешности были в 3 раза меньшими, чем допустимые погрешности данных измерений, т. к. предельная погрешность измерений, возможная в данных условиях, не может превысить

Утроенного значения среднеквадратичной погрешности ряда измерений.

5. В зависимости от схемы включения измерительного прибора его входное сопротивление должно быть, возможно, большим или меньшим.

Чем точнее измерения, тем большими должны быть входные сопротивления измерительных приборов включаемых параллельно, и тем меньшими они должны быть у приборов, включаемых последовательно в исследуемую цепь.

6. Выбирая нужный измерительный прибор, следует учитывать конкретные условия измерений и технические характеристики прибора.

Виды измерений.

Прцесс измерения может осуществляться по-разному в зависимости от рода измеряемой величины и приемов измерения.

По способу получения результатов различабт следующие виды измеренй:

1. Прямые измерения.

2. Косвенные измерения.

3. Совокупные измерения.

К прямым измерениям Относятся измерения, результат которых получается непосредственно из опытных данных измерения.

Прямое измерение условно можно выразить формулой Y=Х, где

Y – искомое значение измеряемой величины;

Х – значение, непосредственно получаемоеиз опытных данных.

К этому виду измерений относятся измерения различных физичских величин при помощи приборов, градуированных в установленных единицах (ток – апмерметром, температура – термометром). К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой.

Косвенными Называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвеных измерениях числовое значение измеряемой величины определяют путем вычисления по формуле.

Y = F (X 1 , X 2 , … , Xn ),

где y – искомое значение измеряемой величины;

x1, x2, …, xn – значения измеренных величин (R = U/I, P = U*I – в цепях постоянного тока).

Совокупными Называются такие измерения, при коорых искомые значения величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами, т. е. путем решения системы уравнений.

Примером этого вида измерений является определение температурных коэффициентов сопротивления:

Rt = R 20

Здесь Rt и t измеряются прямым измерением, а α, β и R20 – искомые величины.

Меняя тепловой режим катушки и измеряя Rt при ряде заданных температур t1; t2 и t3, получаем систему уравнений, совместное решение которых позволяет определить числовые значения искомых величин.



Похожие статьи
 
Категории