Все рецепторы организма. Рецепторные виды

23.09.2019

Рецептор - (от лат. recipere - получать), нервные образования, преобразующие химико-физические воздействия из внешней или внутренней среды организма в нервные импульсы; периферическая специализированная часть анализатора, посредством которой только определенный вид энергии трансформируется в процесс нервного возбуждения. Рецепторы широко варьируют по степени сложности структуры и по уровню приспособленности к своей функции. В зависимости от энергии соответствующего раздражения рецепторы делятся на механорецепторы и хеморецепторы. Механорецепторы обнаружены в ухе, вестибулярном аппарате, мышцах, суставах, в коже и внутренних органах. Хеморецепторы обслуживают обонятельную и вкусовую чувствительность: многие из них находятся в мозге, реагируя на изменения химического состава жидкой среды организма. Зрительные рецепторы также, по существу, являются хеморецепторами. В зависимости от положения в организме и выполняемой функции рецепторов делятся на экстерорецепторы, интерорецепторы и проприоцепторы. К экстерорецепторам относятся дистантные рецепторы, получающие информацию на некотором расстоянии от источника раздражения (обонятельные, слуховые, зрительные, вкусовые); интерорецепторы сигнализируют о раздражителях внутренней среды, а проприорецепторы - о состоянии двигательной системы организма. Отдельные рецепторы анатомически связаны друг с другом и образуют рецептивные поля, способные перекрываться.

Реце́птор - сложное образование, состоящие из терминалей(нервных окончаний) и дендритов чувствительных нейронов, глии и специализированных клеток другихтканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды(раздражение) в нервный импульс. Эта внешняя информация может поступать на рецептор в форме света,попадающего на сетчатку; механической деформации кожи, барабанной перепонки или полукружных каналов;химических веществ, проникающих в органы обоняния или вкуса.

Принцип работы и виды рецепторов

Большинство обычных сенсорных рецепторов (химических, температурных или механических)деполяризуется в ответ на стимул (такая же реакция, как и у обычных нейронов), деполяризация ведёт квысвобождению медиатора из аксонных окончаний. Однако существуют исключения: при освещении колбочкипотенциал на её мембране возрастает - мембрана гиперполяризуется : свет, повышая потенциал,уменьшает выделение медиатора.

Существуют следующие виды рецепторов:

Природараздражителя Тип рецептора Место расположения и комментарии
электрическое поле ампула Лоренцини en:Ampullae of Lorenzini
атмосферноедавление барорецептор
химическоевещество хемосенсор
влажность гидрорецептор
механическоенапряжение механорецептор
повреждениетканей ноцирецептор В большинстве тканей с разной частотой. Болевыерецепторы - свободные нервные окончания,немиелинизированные.
осмотическоедавление осморецептор
свет фоторецептор
положение тела проприоцептор
температура терморецептор
электромагнитноеизлучение электромагнитныерецепторы

Рецепторы кожи

Болевые рецепторы.

Тельца Пачини - капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются вподкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент началавоздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то естьпредставляют грубую чувствительность.

Тельца Мейснера - рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру снервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малымирецептивными полями, то есть представляют тонкую чувствительность.

Диски Меркеля - некапсулированные рецепторы давления. Являются медленноадаптирующимися(реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления.Обладают малыми рецептивными полями.

Рецепторы волосяных луковиц - реагируют на отклонение волоса.

Окончания Руффини - рецепторы растяжения. Являются медленноадаптирующимися, обладают большимирецептивными полями.

Рецепторы мышц и сухожилий

Мышечные веретена - рецепторы растяжения мышц, бывают двух типов:

с ядерной сумкой

с ядерной цепочкой

Сухожильный орган Гольджи - рецепторы сокращения мышц. При сокращении мышцы сухожилиерастягивается и его волокна пережимают рецепторное окончание, активируя его.

Рецепторы связок

В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа -инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 - тельцам Паччини.

Рецепторы сетчатки глаза

Сетчатка содержит палочковые (палочки ) и колбочковые (колбочки ) фоточувствительные клетки, которыесодержат светочуствительные пигменты. Палочки чуствительны к очень слабому свету, это длинные и тонкиеклетки, сориентированные по оси прохождения света. Все палочки содержат один и тот жесветочуствительный пигмент. Колбочки требуют намного более яркого освещения, это короткиеконусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свойсветочуствительный пигмент - это и есть основа цветового зрения.

Под воздействием света в рецепторах происходит выцветание - молекула зрительного пигмента поглощаетфотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны). Практически увсех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединенанебольшая молекула, близкая к витамину A. Эта молекула и представляет собой химическитрансформируемую светом часть. Белковая часть выцвевшей молекулы зрительного пигмента активируетмолекулы трансдуцина, каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата,участвующих в открытии пор мембраны для ионов натрия, в результате чего поток ионов прекращается -мембрана гиперполяризуется.

Чуствительность палочек такова, что адаптировавшийся к полной темноте человек способен увидеть вспышкусвета такую слабую, что ни один рецептор не может получить больше одного фотона. При этом палочки неспособны реагировать на изменения освещённости когда свет настолько ярок, что все натриевые поры ужезакрыты.

15. Катехоломины (серотонин и его роль в химизме головного мозга)

Серотонин часто называют «гормоном счастья», он вырабатывается в организме в моменты экстаза, его уровень повышается во время эйфории и понижается во время депрессии.

Но наряду с важнейшей задачей дарить нам хорошее настроение, он выполняет в организме еще массу функций.

ЧТО ТАКОЕ СЕРОТОНИН?

Серотонин - химический передатчик импульсов между нервными клетками. Хотя это вещество вырабатывается в мозге, где и выполняет свои первичные функции, приблизительно 95 % серотонина синтезируется в желудочно-кишечном тракте и в тромбоцитах. В организме постоянно циркулирует до 10 мг серотонина.

Серотонин относится к биогенным аминам, метаболизм сходен с метаболизмом катехоламинов. Он участвует в регуляции памяти, сна, поведенческих и эмоциональных реакциях, контроле кровяного давления, терморегуляции, пищевых реакциях. Образуется в серотонинэргических нейронах, эпифизе, а также энтерохромаффировых клетках желудочно-кишечного тракта.

95% серотонина в человеческом организме локализовано в кишечнике, это основной источник серотонина крови.

В крови он содержится преимущественно в тромбоцитах, которые захватывают серотонин из плазмы.

КАК ОБРАЗУЕТСЯ СЕРОТОНИН В МОЗГЕ?

Известно, что уровень серотонина зашкаливает в моменты счастья и падает во время депрессии. 5-10% серотонина синтезируется шишковидной железой из жизненно необходимой аминокислоты триптофана. Для его производства абсолютно необходим солнечный свет, именно поэтому в солнечные дни наше настроение на высоте. Этим же процессом можно объяснить и общеизвестную зимнюю депрессию.

КАКУЮ РОЛЬ СЕРОТОНИН ИГРАЕТ В НАШЕМ ЗДОРОВЬЕ?

Серотонин помогает передать информацию из одной области мозга в другую. Кроме того, он влияет на множество психологических и других процессов в организме. Из 80-90 миллиардов клеток головного мозга серотонин оказывает прямое или косвенное влияние на большинство из них. Он затрагивает работу клеток, которые отвечают за настроение, сексуальное желание и функцию, аппетит, сон, память и способность к обучению, температуру и некоторые аспекты социального поведения.

Доказано, что при снижении серотонина повышается чувствительность болевой системы организма, то есть даже самое слабое раздражение отзывается сильной болью.

Серотонин также может влиять на функционирование сердечно-сосудистой, эндокринной систем и работу мышц.

Исследования показали, что серотонин может играть роль в образовании грудного молока, а его недостаток может стать первопричиной внезапной смерти грудного ребенка во время сна.

Серотонин нормализует свёртывание крови. У больных со склонностью к кровотечениям количество серотонина снижено. Введение серотонина способствует уменьшению кровоточивости.

Серотонин стимулирует гладкую мускулатуру сосудов, дыхательных путей, кишечника.При этом усиливает перистальтику кишечника, уменьшает суточное количество мочи, суживает бронхиолы (разветвления бронхов). Недостаток серотонина может вызвать кишечную непроходимость.

Избыток гормона серотонина в регулирующих структурах головного мозга действует угнетающе на функции половой системы

Серотонин участвует в патогенезе заболеваний желудочно-кишечного тракта, в частности карциноидного синдрома и синдрома раздраженного кишечника. Определение концентрации серотонина в крови в клинической практике используют преимущественно в диагностике карциноидных опухолей брюшной полости (тест положителен в 45% случаев карциноида прямой кишки). Исследование серотонина крови целесообразно использовать в комплексе с определением экскреции метаболита серотонина (5-НIАА) с мочой.

КАКАЯ СВЯЗЬ МЕЖДУ СЕРОТОНИНОМ И ДЕПРЕССИЕЙ?

Настроение человека во много зависит от количества серотонина в организме. Часть серотонина вырабатывается мозгом, но вместе с тем, достаточно большая его часть вырабатывается кишечником.

Не исключено, что именно дефицит серотонина в кишечнике и определяет развитие депрессии. А его недостаток в головном мозге - всего лишь следствие, сопутствующий признак.

Причем этот феномен может объяснить и побочный эффект от применения самых распространенных средств для лечения депрессии. Ведь часто используемые антидепрессанты (ингибиторы обратного захвата серотонина) действуют и на кишечник, вызывая тошноту и нарушения пищеварения.

А дефицит серотонина повышает болевой порог чувствительности, вызывает нарушение моторики кишечника (СРК - синдром раздраженного кишечника, запоры и диарею), секреции желудка и двенадцатиперстной кишки (хронические гастриты и язвы). Нехватка серотина сказывается на метаболизме полезной микрофлоры толстого кишечника, угнетая его.

Помимо дисбиоза кишечника, причиной нехватки серотонина в организме могут быть и все другие заболевания органов пищеварения, приводящие к плохому усваиванию из пищи необходимых организму веществ, например триптофана.

Вероятно, что первопричина депрессии кроется в низком количестве клеток головного мозга, ответственных за выработку серотонина, а также в нехватке рецепторов, способных получить выработанный серотонин. Либо виной всему дефицит триптофана – незаменимая аминокислота из которой состоит серотонин. Если имеет место хоть одна из этих проблем, есть большая вероятность депрессии, а также одержимо-навязчивых нервных расстройств: беспокойства, паники и приступов беспричинного гнева.

В то же время пока наверняка не известно – дефицит серотонина вызывает депрессию, либо депрессия заставляет уровень серотонина снижаться

СЕРОТОНИНОВЫЙ СИНДРОМ - патологическое состояние, связанное с избыточным выделением серотонина.

Вызывается применением повышающих содержание в головном мозге серотонина антидепрессантов, особенно в комбинации с препаратами, усиливающими действие серотонина (ингибиторами моноаминоксидазы, препаратами лития, агонистами дофаминовых рецепторов и др.).

Клинически проявляется возбуждением, спутанностью сознания, которые сопровождаются двигательными нарушениями (миоклонией, дрожанием, повышением мышечного тонуса, атаксией) и вегетативными нарушениями (субфебрильной температурой, тошнотой, диареей, головной болью, гиперемией лица, ознобом, профузным потоотделением, учащением дыхания и пульса, колебаниями артериального давления, расширением зрачков). В тяжёлых случаях возможны высокая лихорадка, эпилептические припадки, опистотонус, синдром диссеминированного внутрисосудистого свёртывания, миоглобинурия, почечная недостаточность, кома.

Обычно С.с. проходит самостоятельно в течение нескольких часов или дней после отмены серотониномиметического препарата. Однако описаны случаи с летальным исходом. Лечение включает главным образом симптоматические меры. Антагонисты серотонина (например, метисергид, ципрогептадин), бета-адреноблокаторы способствуют более быстрому регрессу симптомов.

5.1.1. ПОНЯТИЕ О РЕЦЕПТОРАХ

В физиологии термин «рецептор» применяет­ся в двух значениях.

Во-первых, это сенсорные рецепторы -

специфические клетки, настроенные на вос­приятие различных раздражителей внешней и внутренней среды организма и обладающие высокой чувствительностью к адекватному раздражителю. Сенсорные рецепторы (лат. ге-ceptum - принимать) воспринимают раздра-

жители внешней и внутренней среды организ­ма путем преобразования энергии раздраже­ния в рецепторный потенциал, который пре­образуется в нервные импульсы. К другим - неадекватным раздражителям - они малочув­ствительны. Неадекватные раздражители могут возбудить рецепторы: например, меха­ническое давление на глаз вызывает ощуще­ние света, однако энергия неадекватного раз­дражителя должна быть в миллионы и милли­арды раз больше адекватного. Сенсорные ре­цепторы являются первым звеном в рефлек­торном пути и периферической частью более сложной структуры - анализаторов. Совокуп­ность рецепторов, стимуляция которых при­водит к изменению активности каких-либо нервных структур, называют рецептивным полем. Такой структурой могут быть аффе­рентное волокно, афферентный нейрон, нерв­ный центр (соответственно рецептивное поле афферентного волокна, нейрона, рефлекса). Рецептивное поле рефлекса часто называют рефлексогенной зоной.

Во-вторых, это эффекторные рецепторы (циторецепторы), представляющие собой белковые структуры клеточных мембран, а также цитоплазмы и ядра, способные связы­вать активные химические соединения (гор­моны, медиаторы, лекарства и др.) и запус­кать ответные реакции клетки на эти соеди­нения. Эффекторные рецепторы имеют все клетки организма, в нейронах их особенно много на мембранах синаптических межкле­точных контактов. В данной главе рассмат­риваются только сенсорные рецепторы, обес­печивающие поступление информации о внешней и внутренней среде организма в центральную нервную систему (ЦНС). Их де­ятельность является необходимым условием для осуществления всех функций ЦНС.

5.1.2. КЛАССИФИКАЦИЯ РЕЦЕПТОРОВ

Нервная система отличается большим разно­образием рецепторов, различные типы кото­рых представлены на рис. 5.1.

А. Центральное место в классификации ре­цепторов занимает их подразделение в зависи­мости от вида воспринимаемого раздражителя. Выделяют пять таких типов рецепторов.

1. Механорецепторы возбуждаются при механической их деформации. Они располо­жены в коже, сосудах, внутренних органах, опорно-двигательном аппарате, слуховой и вестибулярной системах.

2. Хеморецепторы воспринимают хими­ческие изменения внешней и внутренней

среды организма. К ним относятся вкусовые и обонятельные рецепторы, а также рецепто­ры, реагирующие на изменение состава крови, лимфы, межклеточной и цереброспи­нальной жидкости (изменение напряжения О 2 и СО 2 , осмолярности, рН, уровня глюкозы и других веществ). Такие рецепторы есть в слизистой оболочке языка и носа, каротид-ном и аортальном тельцах, гипоталамусе и продолговатом мозге.

3. Терморецепторы - воспринимают изме­нения температуры. Они подразделяются на тепловые и холодовые рецепторы и находятся в коже, сосудах, внутренних органах, гипота­ламусе, среднем, продолговатом и спинном мозге.

4. Фоторецепторы в сетчатке глаза вос­принимают световую (электромагнитную) энергию.

5. Ноцицепторы - их возбуждение сопро­вождается болевыми ощущениями (болевые рецепторы). Раздражителями этих рецепто­ров являются механические, термические и химические (гистамин, брадикинин, К + , Н + и др.) факторы. Болевые стимулы воспринима­ются свободными нервными окончаниями, которые имеются в коже, мышцах, внутрен­них органах, дентине, сосудах.

Б. С психофизиологической точки зрения рецепторы подразделяют в соответствии с ор­ганами чувств и формируемыми ощущения­ми на зрительные, слуховые, вкусовые, обо­нятельные и тактильные.

В. По расположению в организме рецепто­ры делят на экстеро- и интерорецепторы. К экстерорецепторам относятся рецепторы кожи, видимых слизистых оболочек и орга­нов чувств: зрительные, слуховые, вкусовые, обонятельные, тактильные, кожные болевые и температурные. К интерорецепторам при­надлежат рецепторы внутренних органов (висцерорецепторы), сосудов и ЦНС. Разно­видностью интерорецепторов являются ре­цепторы опорно-двигательного аппарата (проприорецепторы) и вестибулярные рецеп­торы. Если одна и та же разновидность ре­цепторов (например, хеморецепторы к СО 2) локализованы как в ЦНС (продолговатый мозг), так и в других местах (сосуды), то такие рецепторы подразделяют на централь­ные и периферические.

Г. В зависимости от степени специфичнос­ти рецепторов, т.е. их способности отвечать на один или более видов раздражителей, вы­деляют мономодальные и полимодальные ре­цепторы. В принципе каждый рецептор может отвечать не только на адекватный, но и на неадекватный раздражитель, однако чув-

ствительность к ним разная. Рецепторы, чув­ствительность которых к адекватному раздра­жителю намного превосходит таковую к не­адекватным, называются мономодальными. Мономодальность особенно характерна для экстерорецепторов (зрительных, слуховых, вкусовых и др.), но есть мономодальные и интерорецепторы, например хеморецепторы каротидного синуса. Полимодальные рецепто­ры приспособлены к восприятию нескольких адекватных раздражителей, например меха­нического и температурного или механичес­кого, химического и болевого. К полимо­дальным рецепторам относятся, в частности, ирритантные рецепторы легких, восприни­мающие как механические (частицы пыли), так и химические (пахучие вещества) раздра­жители во вдыхаемом воздухе. Разница в чув­ствительности к адекватным и неадекватным раздражителям у полимодальных рецепторов выражена меньше, чем у мономодальных.

Д. По структурно-функциональной органи­зации различают первичные и вторичные ре­цепторы. Первичные представляют собой чув­ствительные окончания дендрита афферент­ного нейрона. Тело нейрона обычно распо­ложено в спинномозговом ганглии или в ган­глии черепных нервов, кроме того, для веге­тативной нервной системы - в экстра- и ин-траорганных ганглиях. В первичном рецепто-

ре раздражитель действует непосредственно на окончания сенсорного нейрона (см. рис. 5.1). Характерным признаком такого рецеп­тора является то, что рецепторный потенциал генерирует потенциал действия в пределах одной клетки - сенсорного нейрона. Пер­вичные рецепторы являются филогенетичес­ки более древними структурами, к ним отно­сятся обонятельные, тактильные, темпера­турные, болевые рецепторы, проприорецеп-торы, рецепторы внутренних органов.

Во вторичных рецепторах имеется специ­альная клетка, синаптически связанная с окончанием дендрита сенсорного нейрона (см. рис. 5.1). Это клетка эпителиальной при­роды или нейроэктодермального (например, фоторецептор) происхождения. Для вторич­ных рецепторов характерно, что рецептор­ный потенциал и потенциал действия возни­кают в разных клетках, при этом рецептор­ный потенциал формируется в специализи­рованной рецепторной клетке, а потенциал действия - в окончании сенсорного нейро­на. Ко вторичным рецепторам относятся слу­ховые, вестибулярные, вкусовые рецепторы, фоторецепторы сетчатки.

Е. По скорости адаптации рецепторы делят на три группы: быстро адаптирующиеся (фаз­ные), медленно адаптирующиеся (тонические) и смешанные (фазно-тонические), адаптирую-

щиеся со средней скоростью. Примером бы­стро адаптирующихся рецепторов являются рецепторы вибрации (тельца Пачини) и при­косновения (тельца Мейсснера) кожи. К мед­ленно адаптирующимся рецепторам относят­ся проприорецепторы, рецепторы растяже­ния легких, часть болевых рецепторов. Со средней скоростью адаптируются фоторецеп­торы сетчатки, терморецепторы кожи.

5.1.3. РЕЦЕПТОРЫ КАК СЕНСОРНЫЕ ПРЕОБРАЗОВАТЕЛИ

Несмотря на большое многообразие рецепто­ров, в каждом из них можно выделить три ос­новных этапа преобразования энергии раз­дражения в нервный импульс.

1. Первичное преобразование энергии раздра­жения. Конкретные молекулярные механиз­мы этого процесса изучены недостаточно. На этом этапе происходит отбор раздражителей: воспринимающие структуры рецептора взаи­модействуют с тем раздражителем, к которому они эволюционно приспособлены. Например, при одновременном действии на организм света, звуковых волн, молекул пахучего веще­ства рецепторы возбуждаются только при дей­ствии одного из перечисленных раздражите­лей - адекватного раздражителя, способного вызывать конформационные изменения вос­принимающих структур (активацию рецеп-торного белка). На этом этапе во многих ре­цепторах происходит усиление сигнала, поэ­тому энергия формирующегося рецепторного потенциала может быть многократно (напри­мер, в фоторецепторе в 10 5 раз) больше поро­говой энергии раздражения. Возможным ме­ханизмом рецепторного усилителя является каскад ферментных реакций в некоторых ре­цепторах, аналогичный действию гормона через вторые посредники. Многократно уси­ленные реакции этого каскада изменяют со­стояние ионных каналов и ионных токов, что формирует рецепторный потенциал.

2. Формирование рецепторного потенциала (РП). В рецепторах (кроме фоторецепторов) энергия раздражителя после ее преобразова­ния и усиления приводит к открытию натри­евых каналов и появлению ионных токов, среди которых основную роль играет входя­щий натриевый ток. Он приводит к деполя­ризации мембраны рецептора. Считают, что в хеморецепторах открытие каналов связано с изменением формы (конформацией) ворот­ных белковых молекул, а в механорецепто-рах - с растяжением мембраны и расшире­нием каналов. В фоторецепторах натриевый

ток течет в темноте, а при действии света происходит закрытие натриевых каналов, что уменьшает входящий натриевый ток, поэто­му рецепторный потенциал представлен не деполяризацией, а гиперполяризацией.

3. Превращение РП в потенциал действия. Рецепторный потенциал не обладает в отли­чие от потенциала действия регенеративной деполяризацией и может распространяться только электротонически на небольшие (до 3 мм) расстояния, так как при этом происхо­дит уменьшение его амплитуды (затухание). Для того чтобы информация сенсорных раз­дражителей достигла ЦНС, РП должен быть преобразован в потенциал действия (ПД). В первичных и вторичных рецепторах это происходит разными способами.

В первичных рецепторах рецепторная зона является частью афферентного нейрона - окончание его дендрита. Возникший РП, распространяясь электротонически, вызыва­ет деполяризацию в участках нейрона, в ко­торых возможно возникновение ПД. В мие-линовых волокнах ПД возникает в ближай­ших перехватах Ранвье, в безмиелиновых - ближайших участках, имеющих достаточную концентрацию потенциалзависимых натрие­вых и калиевых каналов, а при коротких дендритах (например, в обонятельных клет­ках) - в аксонном холмике. Если деполяри­зация мембраны при этом достигает крити­ческого уровня (порогового потенциала), то происходит генерация ПД (рис. 5.2).

Во вторичных рецепторах РП возникает в эпителиальной рецепторной клетке, синап-тически связанной с окончанием дендрита афферентного нейрона (см. рис. 5.1). Рецеп-торный потенциал вызывает выделение в си-наптическую щель медиатора. Под влиянием медиатора на постсинаптической мембране возникает генераторный потенциал (возбуж­дающий постсинаптический потенциал), обеспечивающий возникновение ПД в нерв­ном волокне вблизи постсинаптической мем­браны. Рецепторный и генераторный потен­циалы являются локальными потенциалами.

Рецепторы

Две тысячи лет назад Аристотель написал, что у человека существуют пять чувств: зрение, слух, осязание, обоняние и вкус. За два тысячелетия ученые неоднократно открывали органы новых «шестых чувств», например вестибулярный аппарат или температурные рецепторы. Эти органы чувств часто называют «ворота в мир»: они позволяют животным ориентироваться во внешней среде и воспринимать сигналы себе подобных. Однако не меньшее значение в жизни животных играет и «взгляд внутрь себя»; ученые открыли разнообразные рецепторы, измеряющие кровяное давление, содержание сахара и углекислого газа в крови, осмотическое давление крови, степень растяжения мышц и т. д. Эти внутренние рецепторы, сигналы которых, как правило, не доходят до сознания, позволяют нашей нервной системе управлять разнообразными процессами внутри организма.

Из сказанного ясно, что классификация Аристотеля явно устарела и сегодня число разных «чувств» оказалось бы весьма велико, особенно если рассматривать органы чувств разнообразных организмов, населяющих Землю.

Вместе с тем, по мере изучения этого разнообразия обнаружилось, что в основе работы всех органов чувств лежит один принцип. Внешнее воздействие принимается специальными клетками - рецепторами и меняет МП этих клеток. Этот электрический сигнал называют рецепторным потенциалом. А дальше рецепторный потенциал управляет выделением медиатора из рецепторной клетки, либо частотой ее импульсации. Таким образом, рецептор - это преобразователь внешних воздействий в электрические сигналы, как об этом гениально догадался Вольт.

Рецепторы передают сигналы в нервную систему, где происходит их дальнейшая обработка.

В старые времена на производстве приборы располагались непосредственно у мест измерения. Например, каждый паровой котел был снабжен своим термометром и манометром. Однако в дальнейшем такие приборы, как правило, заменяли датчиками, преобразующими температуру или давление в электрические сигналы; эти сигналы можно было легко передать на расстояние. Теперь оператор смотрит на щит, где собраны приборы, показывающие температуру, давление, скорость вращения турбины и т. д., и не должен обходить по очереди все агрегаты. Фактически, живые организмы выработали такую прогрессивную систему измерения разных величин за сотни миллионов лет до возникновения техники. Роль щита, на который поступают все сигналы, играет при этом мозг.

Разнообразные рецепторы естественно классифицировать по типам воспринимаемых ими внешних воздействий. Например, такие разные рецепторы, как рецепторы органа слуха, рецепторы органа равновесия, рецепторы, обеспечивающие осязание, реагируют на внешние воздействия одного и того же типа - механические. С этой точки зрения можно выделить следующие типы рецепторов.

1) Фоторецепторы, клетки, реагирующие на электромагнитные волны, частота которых лежит в определенном диапазоне.

2) Механорецепторы, клетки, реагирующие на смещение их частей друг относительно друга; к механорецепторам, как уже говорилось, относятся и клетки, воспринимающие звуки, т. е. колебания воды и воздуха определенной частоты, и осязательные механорецепторы, и клетки органов боковой линии рыб, воспринимающие движение воды относительно тела рыбы, и клетки, реагирующие на растяжение мышц и сухожилий, и др.

3) Хеморецепторы, клетки, реагирующие на те или иные химические вещества; их деятельность лежит в основе работы органов обоняния и вкуса.

4) Терморецепторы, клетки, воспринимающие температуру.

5) Электрорецепторы, клетки, реагирующие на электрические поля в окружающей среде.

Пожалуй, эти пять типов рецепторов мы поставили бы сегодня на место пяти чувств, описанных Аристотелем.

Давайте рассмотрим теперь для примера один из типов рецепторных клеток - фоторецепторы.

Фоторецепторы

Фоторецепторы сетчатки позвоночных - это палочки и колбочки. Еще в 1866 г. немецкий анатом М. Шульц обнаружил, что у дневных птиц в сетчатке в основном находятся колбочки, а у ночных птиц - палочки. Он сделал вывод, что палочки служат для восприятия слабого света, а колбочки - сильного. Этот вывод подтвердился последующими исследованиями. Сравнение разных животных добавило много аргументов в пользу этой гипотезы: например, у глубоководных рыб с их огромными глазами в сетчатке имеются только палочки.

Посмотрите на рис. 59. На нем изображена палочка позвоночного животного. У нее есть внутренний сегмент и наружный сегмент, соединенные шейкой. В области внутреннего сегмента палочка образует синапсы и выделяет медиатор, действующий на связанные с ней нейроны сетчатки. Медиатор выделяется, как и у других клеток, при деполяризации. Во внешнем сегменте имеются особые образования - диски, в мембрану которых встроены молекулы родопсина. Этот белок и является непосредственным «приёмником» света.

При изучении палочек оказалось, что палочка может быть возбуждена всего одним фотоном света, т. е. обладает максимально возможной чувствительностью. При поглощении одного фотона МП палочки меняется примерно на 1 мВ. Расчеты показывают, что для такого сдвига потенциала надо повлиять примерно на 1 ООО ионных каналов. Как же один фотон может повлиять на столько каналов? Было известно, что фотон, проникая в палочку, захватывается молекулой родопсина и меняет состояние этой молекулы.

Но единственная молекула нисколько не лучше одного фотона. Оставалось совершенно непонятным, как эта молекула ухитряется изменить МП палочки, тем более, что диски с родопсином электрически не связаны с наружной мембраной клетки.

Разгадка работы палочек в основном была найдена за последние несколько лет. Оказалось, что родопсин, поглотив квант света, приобретает на некоторое время свойства катализатора и успевает изменить несколько молекул специального белка, которые вызывают, в свою очередь, другие биохимические реакции. Таким образом, работа палочки объясняется возникновением цепной реакции, которая запускается при поглощении всего одного кванта света и приводит к появлению внутри палочки тысяч молекул вещества, способного влиять на ионные каналы изнутри клетки.

Что же делает этот внутриклеточный медиатор? Оказывается, мембрана внутреннего сегмента палочки достаточно обычна - стандартна по своим свойствам: она содержит К-каналы, создающие ПП. А вот мембрана наружного сегмента необычна: она содержит только Ка-каналы. В покое они открыты, и хотя их не очень много, этого достаточно, чтобы идущий через них ток снижал МП, деполяризуя палочку. Так вот, внутриклеточный медиатор способен закрывать часть Ка-каналов, при этом сопротивление нагрузки растет и МП тоже нарастает, приближаясь к калиевому равновесному потенциалу. В результате палочка при действии на нее света гиперполяризуется.

А теперь на минуту задумайтесь над тем, что вы только что узнали, и вы сильно удивитесь. Оказывается, наши фоторецепторы выделяют больше всего медиатора в темноте, а вот при освещении они выделяют его меньше, и тем меньше, чем ярче свет. Это удивительное открытие было сделано в 1968г. Ю.А. Трифоновым из лаборатории А.Л. Вызова, когда о механизме работы палочек было известно еще мало.

Итак, мы тут встретились еще с одним типом каналов - каналами, управляемыми изнутри клетки.

Если мы сравним фоторецептор позвоночного и беспозвоночного животного, то увидим, что в их работе очень много общего: имеется пигмент типа родопсина; сигнал от возбужденного пигмента передается к наружной мембране с помощью внутриклеточного медиатора; клетка не способна к генерации ПД. Различие же состоит в том, что внутриклеточный медиатор действует у разных организмов на разные ионные каналы: у позвоночных он вызывает гиперполяризацню рецептора, а у беспозвоночных, как правило,- деполяризацию. Например, у морского моллюска - гребешка - при освещении рецепторов дистальной сетчатки возникает их гиперполяризация, как у позвоночных, но механизм ее совершенно другой. У гребешка свет увеличивает проницаемость мембраны к ионам калия и МП сдвигается ближе к равновесному калиевому потенциалу.

Однако знак изменения потенциала фоторецептора не слишком существен, его всегда можно изменить в ходе дальнейшей обработки. Важно лишь, чтобы световой сигнал надежно преобразовывался в электрический.

Давайте рассмотрим для примера дальнейшую судьбу возникшего электрического сигнала в зрительной системе уже знакомых нам усоногих раков. У этих животных фоторецепторы при освещении деполяризуются и выделяют больше медиатора, но это не вызывает никакой реакции животного. Зато при затенении глаз рак принимает меры: убирает усики и т. д. Как же это происходит? Дело в том, что медиатор фоторецепторов усоногих раков тормозной, он гиперполяризует следующую клетку нейронной цепи, и она начинает выделять меньше медиатора, поэтому, когда свет становится ярче, никакой реакции не возникает. Наоборот, при затенении фоторецептора он выделяет меньше медиатора и перестает тормозить клетку второго порядка. Тогда эта клетка деполяризуется и возбуждает свою клетку-мишень, в которой возникают импульсы. Клетка 2 в этой цепи называется И-клеткой, от слова «инвертирующая», так как ее основная роль - менять знак сигнала фоторецептора. Усоногий рак имеет довольно примитивные глаза, да ему и немного надо; он ведет прикрепленный образ жизни и ему достаточно знать, что приближается враг. У других животных система нейронов второго и третьего порядков устроена гораздо сложнее,

В фоторецепторах рецепторный потенциал передается дальше электротонически и влияет на количество выделяющегося медиатора. У позвоночных или усоногих раков и следующая клетка безымпульсная и только третий нейрон цепочки способен к генерации импульсов. А вот в рецепторе растяжения наших мышц ситуация совершенно иная. Этот механорецептор представляет собой окончание нервного волокна, обвивающееся спиралью вокруг мышечного волокна. При растяжении ншпцы витки спирали, образованные безмиелиновой частью волокна, отходят друг от друга и в них возникает Г-цепторный потенциал - деполяризация, обусловленная открыванием Ка-каналов, чувствительных к деформации мембраны; этот потенциал создает ток, идущий через перехват Ранвье того же волокна, и перехват генерирует импульсы. Чем сильнее растянута мышца, тем больше рецепторный потенциал и тем выше частота импульсации.

У этого механорецептора и преобразование внешнего воздействия в электрический сигнал, т. е. в рецепторный потенциал, и преобразование рецепторного потенциала в импульсы реализуется участком одного аксона.

Конечно, нам было бы интересно рассказать об устройстве разных рецепторов разных животных, ведь по своей конструкции и применению они бывают весьма экзотическими; однако каждый такой рассказ в конце концов сводился бы к одному и тому же: как внешний сигнал преобразуется в рецепторный потенциал, который управляет выделением медиатора или вызывает генерацию импульсов.

Но об одном типе рецепторов мы все же еще расскажем. Это электрорецептор. Его особенность состоит в том, что сигнал, на который надо реагировать, уже имеет электрическую природу. Что же делает этот рецептор? Преобразует электрический сигнал в электрический?


Электрорецепторы. Как акулы используют закон Ома и теорию вероятностей

В 1951г. английский ученый Лиссман изучал поведение рыбы гимнарха. Эта рыба обитает в мутной непрозрачной воде в озерах и болотах Африки и поэтому не всегда может для ориентации пользоваться зрением. Лиссман предположил, что эти рыбы, подобно летучим мышам, используют для ориентации эхолокацию.

Удивительная способность летучих мышей летать в полной темноте, не натыкаясь на препятствия, была обнаружена очень давно, в 1793г., т. е. почти одновременно с открытием Гальвани. Это сделал Лазаро Спалланцани - профессор университета в Павии. Однако экспериментальное доказательство того, что летучие мыши издают ультразвуки и ориентируются по их эху, было получено только в 1938 г. в Гарвардском университете в США, когда физики создали аппаратуру для регистрации ультразвука.

Проверив ультразвуковую гипотезу ориентации гимнарха экспериментально, Лиссман отверг ее. Оказалось, что гимнарх ориентируется как-то иначе. Изучая поведение гимнарха, Лиссман выяснил, что эта рыба обладает электрическим органом и в непрозрачной воде начинает генерировать разряды очень слабого тока. Такой ток не пригоден ни для защиты, ни для нападения. Тогда Лиссман предположил, что гимнарх должен обладать специальными органами для восприятия электрических полей - электросенсорной системой.

Это была очень смелая гипотеза. Ученые знали, что насекомые видят ультрафиолет, а многие животные слышат неслышимые для нас звуки. Но это было лишь некоторое расширение диапазона в восприятии сигналов, которые могут воспринимать и люди. Лиссман допустил существование совершенно нового типа рецепторов.

Ситуация осложнялась тем, что реакция рыб на слабые токи в это время была уже известной. Ее наблюдали еще в 1917 г. Паркер и Ван Хойзер на сомике. Однако эти авторы дали своим наблюдениям совсем другое объяснение. Они решили, что при пропускании тока через воду в ней меняется распределение ионов, и это влияет на вкус воды. Такая точка зрения казалась вполне правдоподобной: зачем придумывать какие-то новые органы, если результаты можно объяснить известными обычными органами вкуса. Правда, эти ученые никак не доказывали свою интерпретацию; они не поставили контрольного опыта. Если бы они перерезали нервы, идущие от органов вкуса, так чтобы вкусовые ощущения у рыбы исчезли, то обнаружили бы, что реакция на ток сохраняется. Ограничившись словесным объяснением своих наблюдений, они прошли мимо большого открытия.

Лиссман же, напротив, придумал и поставил множество разнообразных опытов и после десятилетней работы доказал свою гипотезу. Примерно 25 лет назад существование электрорецепторов было признано наукой. Электрорецепторы начали изучать, и вскоре они были обнаружены у многих морских и пресноводных рыб, а также у миног. Примерно 5 лет назад такие рецепторы были открыты у амфибий, а недавно - и у млекопитающих.

Где же расположены электрорецепторы и как они устроены?

У рыб есть механорецепторы боковой линии, расположенные вдоль туловища и на голове рыбы; они воспринимают движение воды относительно животного. Электрорецепторы - это другой тип рецепторов боковой линии. Во время эмбрионального развития все рецепторы боковой линии развиваются из того же участка нервной системы, что и слуховые и вестибулярные рецепторы. Так что слуховые рецепторы летучих мышей и электрорецепторы рыб - близкие родственники.

У разных рыб электрорецепторы имеют разную локализацию - они располагаются на голове, на плавниках, вдоль тела, а также и разное строение. Часто электрорецепторные клетки образуют специализированные органы. Мы рассмотрим тут один из таких органов, встречающихся у акул и у скатов,- ампулу Лоренцини. Лоренцини думал, что ампулы - это железы, вырабатывающие слизь рыбы. Ампула Лоренцини представляет собой подкожный канал, один конец которого открыт в наружную среду, а другой оканчивается глухим расширением; просвет канала заполнен желеобразной массой; электрорецепторные клетки выстилают в один ряд «дно» ампулы.

Интересно, что Паркер, который впервые заметил, что рыбы реагируют на слабые электрические токи, изучал и ампулы Лоренцини,но приписал им совсем другие функции. Он обнаружил, что, надавливая палочкой на наружный вход канала, можно вызвать реакцию акулы. Из таких опытов он сделал вывод, что ампула Лоренцини - это манометр для измерения глубины погружения рыбы, тем более, что по строению орган был похож на манометр. Но и на этот раз интерпретация Паркера оказалась ошибочной. Если акулу поместить в барокамеру и создать в ней повышенное давление, то ампула Лоренцини на него не реагирует - и это можно нт>едвидеть х не ставя эксперимента: вода давит со всех сторон и никакого эффекта нет *). А при давлении только на пору в желе, которое ее заполняет, возникает разность потенциалов, подобно тому, как возникает разность потенциалов в пьезоэлектрическом кристалле.

Как же устроены ампулы Лоренцини? Оказалось, что все клетки эпителия, выстилающего канал, прочно соединены между собой особыми «плотными контактами», что обеспечивает высокое удельное сопротивление эпителия. Канал, покрытый такой хорошей изоляцией, проходит под кожей и может иметь длину в несколько десятков сантиметров. Напротив, желе, заполняющее канал ампулы Лоренцини, имеет очень низкое удельное сопротивление; это обеспечивается тем, что в просвет канала ионные насосы накачивают много ионов К + . Таким образом, канал электрического органа представляет собой отрезок хорошего кабеля с высоким сопротивлением изоляции и хорошо проводящей жилой.

«Дно» ампулы устилают в один слой несколько десятков тысяч электрореценторных клеток, которые тоже плотно склеены между собой. Получается, что рецепторная клетка одним концом смотрит внутрь канала, а на другом конце образует синапс, где выделяет возбуждающий медиатор, действующий на подходящее к ней окончание нервного волокна. К каждой ампуле подходят 10- 20 афферентных волокон и каждое дает много терминалей, идущих к рецепторам, так что в результате на каждое волокно действуют примерно 2 ООО рецепторных клеток.

Посмотрим теперь, что происходит с самими электро-рецепторными клетками под действием электрического поля.

Если любую клетку поместить в электрическом поле, то в одной части мембраны знак ГШ совпадет со знаком напряженности поля, а в другой окажется противоположным. Значит, на одной половине клетки МП возрастет, а на другой, наоборот, снизится. Получается, что всякая клетка «чувствует» электрические поля, т. е. является электрорецептором.

И понятно: ведь в этом случае отпадает проблема преобразования внешнего сигнала в естественный для клетки - электрический. Таким образом, электрорецепторные клетки работают очень просто: при надлежащем знаке внешнего поля деполяризуется синаптическая мембрана этих клеток и этот сдвиг потенциала управляет выделением медиатора.

Но тогда возникает вопрос: в чем особенности электрорецепторных клеток? Может ли выполнять их функции любой нейрон? Чему служит особое устройство ампул Лоренцини?

Да, качественно, любой нейрон может считаться электрорецептором, но если перейти к количественным оценкам, ситуация меняется. Естественные электрические поля очень слабы, и все ухищрения, которые использует природа в электрочувствительных органах, направлены на то, чтобы, во-первых, поймать на синаптической мембране возможно большую разность потенциалов, и, во-вторых, обеспечить высокую чувствительность механизма выделения медиатора к изменению МП.

Электрические органы акул и скатов обладают чрезвычайно высокой чувствительностью: рыбы реагируют на электрические поля напряженностью 0,1 мкВ/см. Так что проблема чувствительности решена в природе блестяще. Как же достигаются такие результаты?

Во-первых, обеспечению такой чувствительности способствует устройство ампулы Лоренцини. Если напряженность поля равна 0,1 мкВ/см, а длина канала ампулы равна 10 см, то на всю ампулу придется разность потенциалов в 1 мкВ. Практически все это напряжение будет падать на слое рецепторов, так как его сопротивление гораздо выше, чем сопротивление среды в канале. Акула тут прямо использует закон Ома: V = 11$, так как ток, текущий в цепи, один и тот же, то падение напряжения больше там, где выше сопротивление. Таким образом, чем длиннее канал ампулы и чем ниже его сопротивление, тем большая разность потенциалов подается на электрорецептор.

Во-вторых, закон Ома «применяют» и сами электрорецепторы; разные участки их мембраны тоже имеют разное сопротивление: синаптическая мембрана, где выделяется медиатор, имеет большое сопротивление, а противоположный участок мембраны - маленькое, так что и тут разность потенциалов распределяется возможно выгоднее,

Что же касается чувствительности синаптической мембраны к сдвигам МП, то она может объясняться разными причинами: высокой чувствительностью к сдвигу потенциала могут обладать Са-каналы этой мембраны либо сам механизм выброса медиатора. Очень интересный вариант объяснения высокой чувствительности выделения медиатора к сдвигам МП предложил А.Л. Вызов. Его идея состоит в том, что в таких синапсах ток, генерируемый постсинаптической мембраной, затекает в рецепторные клетки и способствует выделению медиатора; в результате возникает положительная обратная связь: выделение медиатора вызывает ПСП, при этом через синапс течет ток, а это усиливает выделение медиатора. В принципе, такой механизм обязательно должен действовать. Но и в этом случае вопрос является количественным: насколько эффективным является такой механизм, чтобы играть какую-то функциональную роль? В последнее время А.Л. Вызову и его сотрудникам удалось получить убедительные экспериментальные данные, подтверждающие, что такой механизм действительно работает в фоторецепторах.

Борьба с шумами

Итак, за счет разных ухищрений с использованием закона Ома на мембране электрорецепторов создается сдвиг потенциала порядка 1 мкВ. Казалось бы, что если чувствительность пресинаптической мембраны достаточно высока - а это, как мы видели, действительно так и есть,- то все в порядке. Но мы не учли, что повышение чувствительности всякого прибора вызывает новую проблему - проблему борьбы с шумами. Мы называли чувствительность электрорецептора, воспринимающего 1 мкВ, фантастической и теперь поясним, почему. Дело в том, что эта величина гораздо ниже уровня шумов.

В любом проводнике носители зарядов участвуют в тепловом движении, т. е. хаотически движутся в разных направлениях. Иногда больше зарядов движется в одном направлении, чем в другом, а это означает, что в любом проводнике без всякого источника э. д. с. возникают токи. Применительно к металлам эта проблема была рассмотрена еще в 1913 г. де-Гаазом и Лоренцем. Экспериментально тепловые шумы в проводниках были обнаружены в 1927 г., Джонсоном. В том же году Г. Найквист дал детальную и общую теорию этого явления. Теория и эксперимент хорошо согласовывались: было показано, что интенсивность шума линейно зависит от величины сопротивления и от температуры проводника. Это естественно: чем больше сопротивление проводника, тем больше разность потенциалов, которая на нем появляется за счет случайно возникающих токов, а чем выше температура, тем больше скорость движения носителей зарядов. Таким образом, чем больше сопротивление проводника, тем большие колебания потенциала возникают в нем под действием теплового движения зарядов.

А теперь вернемся к электрорецепторам. Мы говорили, что для повышения чувствительности в этом рецепторе выгодно иметь возможно более высокое сопротивление мембраны, чтобы на ней падала большая часть напряжения. И действительно, сопротивление мембраны, которая выделяет медиатор, у электрорецепторной клетки очень велико, порядка 10 10 Ом. Однако за все приходится платить: высокое сопротивление этой мембраны ведет к усилению шумов. Колебание потенциала на мембране электрорецентора за счет тепловых шумов равно примерно 30 мкВ, т. е. в 30 раз больше, чем минимальный воспринимаемый сдвиг МП, возникающий под действием внешнего поля! Получается, что дело обстоит так, как будто вы сидите в комнате, где разговаривают каждый о своем три десятка человек, и пытаетесь вести разговор с одним из них. Если громкость всех шумов будет в 30 раз выше, чем громкость вашего голоса, то беседа будет, конечно, невозможна.

Как же акула «слышит» такой разговор сквозь тепловые шумы? Не имеем ли мы дело с чудом? Конечно, нет. Мы просили вас обратить внимание на то, что на одно воспринимающее волокно действуют синапсы примерно 2 ООО электрорецепторов. Под действием тепловых шумов в мембране то из одного, то из другого синапса выделяется медиатор и аффрентное волокно даже в отсутствие электрических полей вне рыбы все время импульсирует. При появлении внешнего сигнала все 2 ООО клеток выделяют медиатор, В результате этого и усиливается внешний сигнал.

Подождите, скажет думающий читатель, ведь 2 000 клеток и шуметь должны сильнее! Выходит, если продолжить аналогию с разговором в шумной комнате, что 100 человек легче перекричат трехтысячную толпу, чем один - тридцать? Но, оказывается, в действительности, как ни странно, так оно и есть. Наверно, каждый из нас не раз слышал, как сквозь бурю аплодисментов пробиваются ритмичные, все усиливающиеся хлопки. Или сквозь рев трибун стадиона отчетливо слышны возгласы: «Молодцы! Молодцы!», скандируемые даже не очень многочисленной группой болельщиков. Дело в том, что во всех этих случаях мы встречаемся с противоборством сигнала организованного, синхронного, с шумом, т. е. сигналом хаотическим. Грубо говоря, возвращаясь к электрорецепторам, их реакции на внешний сигнал синхронны и складываются, а из случайных тепловых шумов совпадает во времени только какая-то часть. Поэтому амплитуда сигнала растет прямо пропорционально числу рецепторных клеток, а амплитуда шума - значительно медленнее. Но позвольте, опять может вмешаться читатель, если шум в рецепторе всего в 30 раз сильнее сигнала, не слишком" ли расточительна природа? Зачем 2 000 рецепторов? Может, хватило бы и ста?

Когда речь заходит о количественных проблемах, нужно считать, а значит, нужна математика. В математике есть специальный раздел - теория вероятностей, в котором изучаются случайные явления и процессы самой разной природы. К сожалению, с этим разделом математики совсем не знакомят в общеобразовательной школе.

А теперь проведем простой расчет. Пусть внешнее поле сдвинуло МП всех рецепторов на 1 мкВ, Тогда общий полезный сигнал всех рецепторов будет равен 2 ООО неких единиц. Среднее значение шумового сигнала одного рецептора примерно 30 мкВ, но общий шумовой сигнал пропорционален 2000, т. е. равен всего 1350 единицам. Мы видим, что за счет суммации эффекта от большого числа рецепторов полезный сигнал в 1,5 раза превышает шум. Видно, что сотней рецепторных клеток обойтись нельзя. А при отношении сигнала к шуму равном 1,5, нервная система акулы уже способна этот сигнал обнаружить, так что никакого чуда не происходит.

Мы говорили, что палочки сетчатки реагируют на возбуждение всего одной молекулы родопсина. Но такое возбуждение может возникнуть не только под действием света, но и под действием тепловых шумов. В результате высокой чувствительности палочек в сетчатке должны все время возникать сигналы «ложной тревоги». Однако в действительности и в сетчатке имеется система борьбы с шумами, основанная на том же принципе. Палочки связаны между собой ЭС, что ведет к усреднению сдвигов их потенциала, так что все происходит так же, как в электрорецепторах. А еще вспомните объединение через высокопроницаемые контакты спонтанно активных клеток синусного узла сердца, дающее регулярный сердечный ритм и устраняющее колебания, присущие одиночной клетке. Мы видим, что природа широко использует усреднение для борьбы с шумами в разных ситуациях.

Как же животные используют свои электрорецепторы? О способе ориентации рыб в мутной воде мы подробнее поговорим в дальнейшем. А вот акулы и скаты используют свои электрорецепторы при поисках добычи. Эти хищники способны обнаружить скрытую под слоем песка камбалу только по электрическим полям, генерируемым ее мышцами при дыхательных движениях. Эта способность акул была показана в серии красивых опытов, выполненных Келмином в 1971 г, Животное может затаиться и не двигаться, может маскироваться под цвет фона, но оно не может прекратить обмен веществ, остановить работу сердца, перестать дышать, поэтому его всегда демаскируют запахи, а в воде - и электрические поля, возникающие при работе сердца и других мышц. Так что многих хищных рыб можно назвать «электроищейками».

... ; антитела же lgG4, IgA, IgD и IgE не активируют комплемент. К зффекторным функциям иммуноглобулинов относится также их избирательное взаимодействие с различными типами клеток при участии специальных рецепторов клеточной поверхности. КЛЕТОЧНЫЕ РЕЦЕПТОРЫ ДЛЯ АНТИТЕЛ Существует три типа рецепторов клеточной поверхности для IgG Клеточные рецепторы для IgG опосредуют ряд эффекторных функций...

Рецептор - сложное образование, состоящие из терминалей (нервных окончаний) и дендритов чувствительных нейронов, глии и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражение) в нервный импульс. Эта внешняя информация может поступать на рецептор в форме света, попадающего на сетчатку; механической деформации кожи, барабанной перепонки или полукружных каналов; химических веществ, проникающих в органы обоняния или вкуса. Большинство обычных сенсорных рецепторов (химических, температурных или механических) деполяризуется в ответ на стимул (такая же реакция, как и у обычных нейронов), деполяризация ведёт к высвобождению медиатора из аксонных окончаний. Однако существуют исключения: при освещении колбочки потенциал на её мембране возрастает - мембрана гиперполяризуется: свет, повышая потенциал, уменьшает выделение медиатора.

По внутреннему строению рецепторы бывают как простейшими, состоящими из одной клетки, так и высокоорганизованными, состоящими из большого количества клеток, входящих в состав специализированного органа чувств. Животные могут воспринимать информацию следующих типов: - свет (фоторецепторы); - химические вещества - вкус, запах, влажность (хеморецепторы); - механические деформации - звук, прикосновение, давление, сила тяжести (механорецепторы); - температура (терморецепторы); - электричество (электрорецепторы).

Сенсорная клетка посылает информацию по принципу «всё или ничего» (есть сигнал / нет сигнала). Для того, чтобы определить интенсивность стимула, рецепторный орган использует параллельно несколько клеток, у каждой из которых имеется свой порог чувствительности. Существует и относительная чувствительность - на сколько процентов нужно изменить интенсивность сигнала, чтобы орган чувства зафиксировал изменение. Так, у человека относительная чувствительность яркости света примерно равна 1 %, силы звука - 10 %, силы тяжести - 3 %. Эти закономерности были открыты Бугером и Вебером; они справедливы только для средней зоны интенсивности раздражителей. Сенсорам также свойственна адаптация - они реагируют преимущественно на резкие изменения в окружающей среде, не «засоряя» нервную систему статической фоновой информацией. Ч

увствительность сенсорного органа можно значительно повысить посредством суммации, когда несколько расположенных рядом сенсорных клеток связаны с одним нейроном. Слабый сигнал, попадающий в рецептор, не вызвал бы возбуждения нейронов, если бы они были связаны с каждой из сенсорных клеток в отдельности, но вызывает возбуждение нейрона, в котором суммируется информация от нескольких клеток сразу. С другой стороны, этот эффект понижает разрешающую способность органа. Так, палочки в сетчатке глаза, в отличие от колбочек, обладают повышенной чувствительностью, так как один нейрон связан сразу с несколькими палочками, но зато имеют меньшую разрешающую способность. Чувствительность к очень малым изменениям в некоторых рецепторах очень высока благодаря их спонтанной активности, когда нервные импульсы возникают даже в отсутствие сигнала. В противном случае слабые импульсы не смогли бы преодолеть порог чувствительности нейрона. Порог чувствительности может изменяться благодаря импульсам, поступающим из центральной нервной системы (обычно по принципу обратной связи), что изменяет диапазон чувствительности рецептора. Наконец, важную роль в повышении чувствительности играет латеральное торможение. Соседние сенсорные клетки, возбуждаясь, оказывают друг на друга тормозящее воздействие. Благодаря этому усиливается контраст между соседними участками. В зависимости от строения рецепторов их подразделяют на первичные , или первичночувствующие, которые являются специализированными окончаниями чувствительного нейрона, и вторичные , или вторичночувствующие, представляющие собой клетки эпителиального происхождения, способные к образованию рецепторного потенциала в ответ на действие адекватного стимула.

Первичночувствующие рецепторы могут сами генерировать потенциалы действия в ответ на раздражение адекватным стимулом, если величина их рецепторного потенциала достигнет пороговой величины. К ним относятся обонятельные рецепторы, большинство механорецепторов кожи, терморецепторы, болевые рецепторы или ноцицепторы, проприоцепторы и большинство интерорецепторов внутренних органов.

Вторичночувствующие рецепторы отвечают на действие раздражителя лишь возникновением рецепторного потенциала, от величины которого зависит количество выделяемого этими клетками медиатора. С его помощью вторичные рецепторы действуют на нервные окончания чувствительных нейронов, генерирующих потенциалы действия в зависимости от количества медиатора, выделившегося из вторичночувствующих рецепторов. Вторичные рецепторы представлены вкусовыми, слуховыми и вестибулярными рецепторами, а также хемочувствительными клетками синокаротидного клубочка. Фоторецепторы сетчатки, имеющие общее происхождение с нервными клетками, чаще относят к первичным рецепторам, но отсутствие у них способности генерировать потенциалы действия указывает на их сходство с вторичными рецепторами. В зависимости от источника адекватных стимулов рецепторы подразделяют на наружные и внутренние, или экстерорецепторы и интерорецепторы ; первые стимулируются при действии раздражителей внешней среды (электромагнитные и звуковые волны, давление, действие пахучих молекул), а вторые - внутренней (к этому типу рецепторов относят не только висцерорецепторы внутренних органов, но также проприоцепторы и вестибулярные рецепторы). В зависимости от того, действует стимул на расстоянии или непосредственно на рецепторы, их подразделяют еще на дистантные и контактные.

Рецепторы кожи

  • Болевые рецепторы.
  • Тельца Пачини - капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то есть представляют грубую чувствительность.
  • Тельца Мейснера - рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, то есть представляют тонкую чувствительность.
  • Тельца Меркеля - некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями.
  • Рецепторы волосяных луковиц - реагируют на отклонение волоса.
  • Окончания Руффини - рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями.

Рецепторы мышц и сухожилий

  • Мышечные веретена - рецепторы растяжения мышц, бывают двух типов: o с ядерной сумкой o с ядерной цепочкой
  • Сухожильный орган Гольджи - рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его.

Рецепторы связок В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа - инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 - тельцам Паччини.

Рецепторы сетчатки глаза Сетчатка содержит палочковые (палочки) и колбочковые (колбочки) фоточувствительные клетки, которые содержат светочувствительные пигменты. Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки, сориентированные по оси прохождения света. Все палочки содержат один и тот же светочувствительный пигмент. Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свой светочувствительный пигмент - это и есть основа цветового зрения. Под воздействием света в рецепторах происходит выцветание - молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны).

Практически у всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A. Эта молекула и представляет собой химически трансформируемую светом часть. Белковая часть выцвевшей молекулы зрительного пигмента активирует молекулы трансдуцина, каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата, участвующих в открытии пор мембраны для ионов натрия, в результате чего поток ионов прекращается - мембрана гиперполяризуется. Чувствительность палочек такова, что адаптировавшийся к полной темноте человек способен увидеть вспышку света такую слабую, что ни один рецептор не может получить больше одного фотона. При этом палочки не способны реагировать на изменения освещённости когда свет настолько ярок, что все натриевые поры уже закрыты.

В классификации рецепторов центральное место занимает их деление в зависимости от вида воспринимаемого раздражителя. Существует пять типов таких рецепторов. 1. Механорецепторы возбуждаются при их механической деформации, расположены в коже, сосудах, внутренних органах, опорно-двигательном аппарате, слуховой и вестибулярной системах. 2. Хеморецепторы воспринимают химические изменения внешней и внутренней среды организма. К ним относятся вкусовые и обонятельные рецепторы, а также рецепторы, реагирующие на изменение состава крови, лимфы, межклеточной и цереброспинальной жидкости. Такие рецепторы есть в слизистой оболочке языка и носа, каротидном и аортальном тельцах, гипоталамусе и продолговатом мозге. 3. Терморецепторы воспринимают изменения температуры. Они подразделяются на тепловые и холодовые рецепторы и находятся в коже, слизистых оболочках, сосудах, внутренних органах, гипоталамусе, среднем, продолговатом и спинном мозге. 4. Фоторецепторы в сетчатке глаза воспринимают световую энергию. 5. Ноцицепторы, возбуждение которых сопровождается болевыми ощущениями. Раздражителями этих рецепторов являются механические, термические и химические факторы. Болевые стимулы воспринимаются свободными нервными окончаниями, которые имеются в коже, мышцах, внутренних органах, дентине, сосудах. С психофизиологической точки зрения рецепторы подразделяют в соответствии с органами чувств и формируемыми ощущениями на зрительные, слуховые, вкусовые, обонятельные и тактильные.

По расположению в организме рецепторы делят на экстеро- и интерорецепторы. К экстерорецепторам относятся рецепторы кожи, видимых слизистых оболочек и органов чувств: зрительные, слуховые, вкусовые, обонятельные, тактильные, болевые и температурные. К ин-терорецепторам относятся рецепторы внутренних органов, сосудов и ЦНС. Разновидностью интерорецепторов являются рецепторы опорно-двигательного аппарата (проприорецепторы) и вестибулярные рецепторы. Если одна и та же разновидность рецепторов локализована как в ЦНС (в продолговатом мозге), так и в других местах (сосудах), то такие рецепторы подразделяют на центральные и периферические. По скорости адаптации рецепторы делят на три группы: быстро адаптирующиеся (фазные), медленно адаптирующиеся (тонические) и смешанные (фазнотонические), адаптирующиеся со средней скоростью. Примером быстро адаптирующихся рецепторов являются рецепторы вибрации (тельца Пачини) и прикосновения (тельца Мейснера) к коже. К медленно адаптирующимся рецепторам относятся проприорецепторы, рецепторы растяжения легких, болевые рецепторы. Со средней скоростью адаптируются фоторецепторы сетчатки, терморецепторы кожи. По структурно-функциональной организации различают первичные и вторичные рецепторы. Первичные рецепторы представляют собой чувствительные окончания дендрита афферентного нейрона. Тело нейрона расположено в спинно-мозговом ганглии или в ганглии черепных нервов. В первичном рецепторе раздражитель действует непосредственно на окончания сенсорного нейрона. Первичные рецепторы являются филогенетически более древними структурами, к ним относятся обонятельные, тактильные, температурные, болевые рецепторы и проприорецепторы. Во вторичных рецепторах имеется специальная клетка, синаптически связанная с окончанием дендрита сенсорного нейрона. Это клетка, например фоторецептор, эпителиальной природы или нейроэктодермального происхождения. Данная классификация позволяет понять, как возникает возбуждение рецепторов. Реце́птор - сложное образование, состоящие из терминалей (нервных окончаний) дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражитель) в нервный импульс. Рецепторы человека. Рецепторы кожи. Болевые рецепторы. Тельца Пачини - капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то есть представляют грубую чувствительность. Тельца Мейснера - рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, то есть представляют тонкую чувствительность. Тельца Меркеля - некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями. Рецепторы волосяных луковиц - реагируют на отклонение волоса. Окончания Руффини - рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями. Колба Краузе - рецептор, реагирующий на холод. Рецепторы мышц и сухожилий

Мышечные веретена - рецепторы растяжения мышц, бывают двух типов: с ядерной сумкой, с ядерной цепочкой. Сухожильный орган Гольджи - рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его. Рецепторы связок В основном представляют собой свободные нервные окончания, меньшая группа - инкапсулированные. Тип 1 аналогичен окончаниям Руффини, Тип 2 - тельцам Паччини. Рецепторы сетчатки глаза. Сетчатка содержит палочковые (палочки) и колбочковые (колбочки) фоточувствительные клетки, которые содержат светочувствительные пигменты. Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки, сориентированные по оси прохождения света. Все палочки содержат один и тот же светочувствительный пигмент. Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свой светочувствительный пигмент - это и есть основа цветового зрения. Под воздействием света в рецепторах происходит выцветание - молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны). Практически у всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A.

15. Преобразование энергии раздражителя в рецепторах. Рецепторный и генераторный потенциалы. Закон Вебера-Фехнера. Абсолютный и дифференциальный пороги чувствительности .

Этапы преобразования энергии внешнего раздражителя в энергию нервных импульсов. Действие раздражителя. Внешний стимул взаимодействует со специфическими мембранными структурами окончаний чувствительного нейрона (в первичном рецепторе) или рецептирующей клетке (во вторичном рецепторе), что приводит к изменению ионной проницаемости мембраны. Генерация рецепторного потенциала. В результате изменения ионной проницаемости происходит изменение мембранного потенциала (деполяризация или гиперполяризация) чувствительного нейрона (в первичном рецепторе) или рецептирующей клетке (во вторичном рецепторе). Изменение мембранного потенциала, наступающее в результате действия раздражителя, называют рецепторным потенциалом (РП). Распространение рецепторного потенциала. В первичном рецепторе РП распространяется электротонически и достигает ближайшего перехвата Ранвье. Во вторичном рецепторе РП электротонически распространяется по мембране рецептирующей клетки и достигает пресинаптической мембраны, где вызывает выделение медиатора. В результате срабатывания синапса (между рецептирующей клеткой и чувствительным нейроном) происходит деполяризация постсинаптической мембраны чувствительного нейрона (ВПСП). Образовавшийся ВПСП распространяется электротонически по дендриту чувствительного нейрона и достигает ближайшего перехвата Ранвье. В области перехвата Ранвье РП (в первичном рецепторе) или ВПСП (во вторичном рецепторе) преобразуется в серию ПД (нервных импульсов). Образовавшиеся нервные импульсы проводятся по аксону (центральному отростку) чувствительного нейрона в ЦНС. Поскольку РП генерирует образование серии ПД, его часто называют генераторным потенциалом. Закономерности преобразования энергии внешнего раздражителя в серию нервных импульсов: чем выше сила действующего раздражителя, тем больше амплитуда РП; чем больше амплитуда РП, тем больше частота нервных импульсов. Рецепторный и генераторный потенциалы - это частные случаи электротонических потенциалов. Когда рецепторная (сенсорная) клетка, например механочувствительная волосковая или вкусовая, подвергается воздействию соответствующего стимула, реализуется более или менее сложный набор событий, ведущих к изменениям электрической полярности участка их мембраны. Это явление именуется рецепторным потенциалом. В большинстве случаев рецепторные потенциалы - это деполяризация, в других, однако, в частности в палочках и колбочках сетчатки, - это гиперполяризация. Так или иначе, результат - одни и тот же - возникают токи между подвергающимся воздействию участком мембраны и другими участками мембраны рецепторной клетки. В общем случае, изменения электрической полярности (увеличение ее или уменьшение) влияет на выделение медиатора на подлежащий сенсорный нейрон. Не все сенсорные системы развили специализированные сенсорные клетки. Обонятельные и некоторые механорецептивные системы построены на нейросенсорных клетках. В таких случаях функции детектирования соответствующих факторов внешней среды и передачи информации в мозг совмещаются в одной клетке. Электрофизиологические феномены при этом аналогичны только что описанным. Когда чувствительные окончания нейросенсорной клетки подвергаются воздействию стимула, ряд биохимических процессов приводит к изменению электрического потенциала (в случае нейросенсорных клеток - это всегда деполяризация). Механизмом локальных токов таков, что деполяризация распространяется в область мембраны, изобилующую потенциал-зависимыми Na+-каналами. Если деполяризация достаточно велика, Na+-каналы открываются, в результате чего генерируется потенциал действия, который без декремента передается в центральную нервную систему. Поскольку первоначальная деполяризация происходит не в специальной рецепторной клетке, она часто именуется генераторным потенциалом. Многие, однако, оба варианта называют рецепторными потенциалами. Амплитуда генераторных и рецепторных потенциалов зависит от величины стимула - между потенциалом и интенсивностью стимула существует практически прямая пропорциональная зависимость. Из-за того, что локальные токи должны быть достаточно значительными по величине, чтобы запустить выделение медиатора или активировать хотя бы часть популяции потенциал-зависимых Na+-каналов до порогового уровня, запуск потенциала действия в сенсорном нерве наблюдается только, когда рецепторный или генераторный потенциал достигают определенной амплитуда. Иными словами, потенциал действия не генерируется до тех пор, пока стимул не достигнет критической величины. Закон Вебера - Фехнера - эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула.



Похожие статьи
 
Категории