Все точки и линии небесной сферы. Лабораторная работа «Основные элементы небесной сферы

23.09.2019

Произвольного радиуса, на которую проецируются небесные тела: служит для решения различных астрометрических задач. За центр небесной сферы принимают глаз наблюдателя; при этом наблюдатель может находиться как на поверхности Земли, так и в других точках пространства (например, он может быть отнесён к центру Земли). Для наземного наблюдателя вращение небесной сферы воспроизводит суточное движение светил на небе.

Каждому небесному светилу соответствует точка небесной сферы, в которой её пересекает прямая, соединяющая центр сферы с центром светила. При изучении положений и видимых движений светил на небесной сфере выбирают ту или иную систему сферических координат . Расчёты положений светил на небесной сфере производятся с помощью небесной механики и сферической тригонометрии и составляют предмет сферической астрономии .

История

Представление о небесной сфере возникло в глубокой древности; в основу его легло зрительное впечатление о существовании куполообразного небесного свода. Это впечатление связано с тем, что в результате огромной удалённости небесных светил человеческий глаз не в состоянии оценить различия в расстояниях до них, и они представляются одинаково удалёнными. У древних народов это ассоциировалось с наличием реальной сферы, ограничивающей весь мир и несущей на своей поверхности многочисленные звёзды. Таким образом, в их представлении небесная сфера была важнейшим элементом Вселенной. С развитием научных знаний такой взгляд на небесную сферу отпал. Однако заложенная в древности геометрия небесной сферы в результате развития и совершенствования получила современный вид, в котором и используется в астрометрии.

Элементы небесной сферы

Отвесная линия и связанные с ней понятия

Отве́сная ли́ния (или вертика́льная ли́ния ) - прямая , проходящая через центр небесной сферы и совпадающая с направлением нити отвеса в месте наблюдения. Отвесная линия пересекается с поверхностью небесной сферы в двух точках - зените над головой наблюдателя и надире под ногами наблюдателя.

Истинный (математический, или астрономический) горизонт - большой круг небесной сферы, плоскость которого перпендикулярна к отвесной линии. Истинный горизонт делит поверхность небесной сферы на две полусферы: видимую полусферу с вершиной в зените и невидимую полусферу с вершиной в надире. Истинный горизонт не совпадает с видимым горизонтом вследствие приподнятости точки наблюдения над земной поверхностью, а также по причине искривления лучей света в атмосфере.

Круг высоты, или вертикал, светила - большой полукруг небесной сферы, проходящий через светило, зенит и надир. Альмукантара́т (араб. «круг равных высот ») - малый круг небесной сферы, плоскость которого параллельна плоскости математического горизонта. Круги высоты и альмукантараты образуют координатную сетку, задающую горизонтальные координаты светила.

Суточное вращение небесной сферы и связанные с ним понятия

Ось мира - воображаемая линия, проходящая через центр мира, вокруг которой происходит вращение небесной сферы. Ось мира пересекается с поверхностью небесной сферы в двух точках - северном полюсе мира и южном полюсе мира . Вращение небесной сферы происходит против часовой стрелки вокруг северного полюса, если смотреть на небесную сферу изнутри.

Небесный экватор - большой круг небесной сферы, плоскость которого перпендикулярна оси мира и проходит через центр небесной сферы. Небесный экватор делит небесную сферу на два полушария: северное и южное .

Круг склонения светила - большой круг небесной сферы, проходящий через полюсы мира и данное светило.

Суточная параллель - малый круг небесной сферы, плоскость которого параллельна плоскости небесного экватора. Видимые суточные движения светил совершаются по суточным параллелям. Круги склонения и суточные параллели образуют на небесной сфере координатную сетку, задающую экваториальные координаты светила.

Термины, рождаемые в пересечениях понятий «Отвесная линия» и «Вращение небесной сферы»

Небесный экватор пересекается с математическим горизонтом в точке востока и точке запада . Точкой востока называется та, в которой точки вращающейся небесной сферы восходят из-за горизонта. Полукруг высоты, проходящий через точку востока, называется первым вертикалом .

Небесный меридиан - большой круг небесной сферы, плоскость которого проходит через отвесную линию и ось мира. Небесный меридиан делит поверхность небесной сферы на два полушария: восточное полушарие и западное полушарие .

Полуденная линия - линия пересечения плоскости небесного меридиана и плоскости математического горизонта. Полуденная линия и небесный меридиан пересекают математический горизонт в двух точках: точке севера и точке юга . Точкой севера называется та, которая ближе к северному полюсу мира.

Годовое движение Солнца по небесной сфере и связанные с ним понятия

Эклиптика - большой круг небесной сферы, по которому происходит видимое годовое движение Солнца . Плоскость эклиптики пересекается с плоскостью небесного экватора под углом ε = 23°26".

Две точки, в которых эклиптика пересекается с небесным экватором, называются точками равноденствия . В точке весеннего равноденствия Солнце в своём годовом движении переходит из южного полушария небесной сферы в северное; в точке осеннего равноденствия - из северного полушария в южное. Прямая, проходящая через эти две точки, называется линией равноденствий . Две точки эклиптики, отстоящие от точек равноденствия на 90° и тем самым максимально удалённые от небесного экватора, называются точками солнцестояния . Точка летнего солнцестояния находится в северном полушарии, точка зимнего солнцестояния - в южном полушарии. Эти четыре точки обозначаются символами зодиака , соответствующими

Содержание статьи

НЕБЕСНАЯ СФЕРА. Когда мы наблюдаем небо, все астрономические объекты кажутся расположенными на куполообразной поверхности, в центре которой находится наблюдатель. Этот воображаемый купол образует верхнюю половину воображаемой сферы, которую называют «небесной сферой». Она играет фундаментальную роль при указании положения астрономических объектов.

Хотя Луна, планеты, Солнце и звезды расположены на разных расстояниях от нас, даже самые близкие из них находятся так далеко, что мы не в состоянии на глаз оценить их удаленность. Направление на звезду не изменяется, когда мы перемещаемся по поверхности Земли. (Правда, оно немного изменяется при перемещении Земли по орбите, но заметить это параллактическое смещение можно лишь с помощью точнейших приборов.)

Нам кажется, что небесная сфера вращается, поскольку светила восходят на востоке и заходят на западе. Причиной этого служит вращение Земли с запада на восток. Кажущееся вращение небесной сферы происходит вокруг воображаемой оси, продолжающей земную ось вращения. Эта ось пересекает небесную сферу в двух точках, называемых северным и южным «полюсами мира». Северный полюс мира лежит примерно в градусе от Полярной звезды, а вблизи южного полюса нет ярких звезд.

Ось вращения Земли наклонена примерно на 23,5° относительно перпендикуляра, проведенного к плоскости земной орбиты (к плоскости эклиптики). Пересечение этой плоскости с небесной сферой дает круг – эклиптику, видимый путь Солнца за год. Ориентация земной оси в пространстве почти не изменяется. Поэтому каждый год в июне, когда северный конец оси наклонен в сторону Солнца, оно высоко поднимается на небе в Северном полушарии, где дни становятся длинными, а ночи короткими. Переместившись на противоположную сторону орбиты в декабре, Земля оказывается развернута к Солнцу Южным полушарием, и у нас на севере дни становятся короткими, а ночи – длинными.

Однако под влиянием солнечного и лунного притяжения ориентация земной оси все же постепенно меняется. Основное движение оси, вызванное влиянием Солнца и Луны на экваториальное вздутие Земли, называют прецессией. В результате прецессии земная ось медленно поворачивается вокруг перпендикуляра к орбитальной плоскости, описывая за 26 тыс. лет конус радиусом 23,5°. По этой причине через несколько столетий полюс уже не будет вблизи Полярной звезды. Кроме того, ось Земли совершает мелкие колебания, называемые нутацией и связанные с эллиптичностью орбит Земли и Луны, а также с тем, что плоскость лунной орбиты немного наклонена к плоскости земной орбиты.

Как мы уже знаем, вид небесной сферы в течение ночи меняется из-за вращения Земли вокруг оси. Но даже если наблюдать небо в одно и то же время в течение года, его вид будет меняться из-за обращения Земли вокруг Солнца. Для полного оборота по орбите на 360° Земле требуется ок. 365 1 / 4 суток – примерно по градусу в сутки. Кстати, сутки, а точнее – солнечные сутки – это время, за которое Земля поворачивается один раз вокруг оси по отношению к Солнцу. Оно состоит из времени, за которое Земля совершает оборот по отношению к звездам («звездные сутки»), плюс небольшое время – около четырех минут, – необходимое для поворота, компенсирующего орбитальное перемещение Земли за сутки на один градус. Таким образом, в году ок. 365 1 / 4 солнечных суток и ок. 366 1 / 4 звездных.

При наблюдении из определенной точки Земли звезды, расположенные вблизи полюсов, либо всегда находятся над горизонтом, либо никогда не поднимаются над ним. Все остальные звезды восходят и заходят, причем каждый день восход и заход каждой звезды происходит на 4 мин раньше, чем в предыдущий день. Некоторые звезды и созвездия поднимаются на небе ночью в зимнее время – мы называем их «зимними», а другие – «летними».

Таким образом, вид небесной сферы определяется тремя временами: временем суток, связанным с вращением Земли; временем года, связанным с обращением вокруг Солнца; эпохой, связанной с прецессией (хотя последний эффект едва ли заметишь «на глаз» даже за 100 лет).

Системы координат.

Существуют различные способы для указания положения объектов на небесной сфере. Каждый из них подходит к задачам определенного типа.

Альт-азимутальная система.

Для указания положения объекта на небе по отношению к окружающим наблюдателя земным предметам используют «альт-азимутальную», или «горизонтальную», систему координат. В ней указывают угловое расстояние объекта над горизонтом, называемое «высотой», а также его «азимут» – угловое расстояние вдоль горизонта от условной точки до точки, лежащей прямо под объектом. В астрономии азимут отсчитывают от точки юга к западу, а в геодезии и навигации – от точки севера к востоку. Поэтому, прежде чем пользоваться азимутом, нужно выяснить, в какой системе он указан. Точка неба, находящаяся прямо над головой, имеет высоту 90° и называется «зенит», а диаметрально противоположная ей точка (под ногами) – «надир». Для многих задач важен большой круг небесной сферы, называемый « небесным меридианом»; он проходит через зенит, надир и полюсы мира, а горизонт пересекает в точках севера и юга.

Экваториальная система.

Из-за вращения Земли звезды постоянно перемещаются относительно горизонта и сторон света, а их координаты в горизонтальной системе изменяются. Но для некоторых задач астрономии система координат должна быть независимой от положения наблюдателя и времени суток. Такую систему называют «экваториальной»; ее координаты напоминают географические широты и долготы. В ней плоскость земного экватора, продолженная до пересечения с небесной сферой, задает основной круг – «небесный экватор». «Склонение» звезды напоминает широту и измеряется ее угловым расстоянием к северу или югу от небесного экватора. Если звезда видна точно в зените, то широта места наблюдения равна склонению звезды. Географической долготе соответствует «прямое восхождение» звезды. Оно измеряется к востоку от точки пересечения эклиптики с небесным экватором, которую Солнце проходит в марте, в день начала весны в Северном полушарии и осени – в Южном. Эту важную для астрономии точку называют «первой точкой Овна», или «точкой весеннего равноденствия», и обозначают знаком . Значения прямого восхождения обычно указывают в часах и минутах, считая 24 ч равными 360°.

Экваториальную систему используют при наблюдении с телескопами. Телескоп устанавливают так, чтобы он мог вращаться с востока на запад вокруг оси, направленной на полюс мира, компенсируя этим вращение Земли.

Другие системы.

Для некоторых целей используются и другие системы координат на небесной сфере. Например, когда изучают движение тел в Солнечной системе, используют систему координат, основной плоскостью которой служит плоскость земной орбиты. Строение Галактики изучают в системе координат, главной плоскостью которой служит экваториальная плоскость Галактики, представленная на небе кругом, проходящим вдоль Млечного Пути.

Сравнение систем координат.

Важнейшие детали горизонтальной и экваториальной систем показаны на рисунках. В таблице эти системы сопоставлены с географической системой координат.

Таблица: Сравнение систем координат
СРАВНЕНИЕ СИСТЕМ КООРДИНАТ
Характеристика Альт-азимутальная система Экваториальная система Географическая система
Основной круг Горизонт Небесный экватор Экватор
Полюсы Зенит и надир Северный и южный полюсы мира Северный и южный полюсы
Угловое расстояние от основного круга Высота Склонение Широта
Угловое расстояние вдоль основного круга Азимут Прямое восхождение Долгота
Опорная точка на основном круге Точка юга на горизонте
(в геодезии – точка севера)
Точка весеннего равноденствия Пересечение с гринвичским меридианом

Переход из одной системы в другую.

Часто возникает необходимость по альт-азимутальным координатам звезды вычислить ее экваториальные координаты, и наоборот. Для этого необходимо знать момент наблюдения и положение наблюдателя на Земле. Математически проблема решается с помощью сферического треугольника с вершинами в зените, северном полюсе мира и звезде Х; его называют «астрономическим треугольником».

Угол с вершиной в северном полюсе мира между меридианом наблюдателя и направлением на какую-либо точку небесной сферы называют «часовым углом» этой точки; его измеряют к западу от меридиана. Часовой угол точки весеннего равноденствия, выраженный в часах, минутах и секундах, называют «звездным временем» (Si. T. – sidereal time) в точке наблюдения. А поскольку прямое восхождение звезды – это тоже полярный угол между направлением на нее и на точку весеннего равноденствия, то звездное время равно прямому восхождению всех точек, лежащих на меридиане наблюдателя.

Таким образом, часовой угол любой точки на небесной сфере равен разности звездного времени и ее прямого восхождения:

Пусть широта наблюдателя равна j . Если даны экваториальные координаты звезды a и d , то ее горизонтальные координаты а и можно вычислить по следующим формулам:

Можно решить и обратную задачу: по измеренным значениям а и h , зная время, вычислить a и d . Склонение d вычисляется прямо из последней формулы, затем из предпоследней вычисляется Н , а из первой, если известно звездное время, вычисляется a .

Представление небесной сферы.

Многие столетия ученые искали наилучшие способы представления небесной сферы для ее изучения или демонстрации. Предлагались два типа моделей: двумерные и трехмерные.

Небесную сферу можно изобразить на плоскости таким же образом, как сферическую Землю изображают на картах. В обоих случаях необходимо выбрать систему геометрической проекции. Первой попыткой представить участки небесной сферы на плоскости были наскальные рисунки звездных конфигураций в пещерах древних людей. В наши дни существуют различные звездные карты, изданные в виде рисованных или фотографических звездных атласов, покрывающих все небо.

Древние китайские и греческие астрономы представляли небесную сферу в виде модели, известной как «армиллярная сфера». Она состоит из металлических кругов или колец, соединенных вместе так, чтобы показать важнейшие круги небесной сферы. Сейчас нередко используют звездные глобусы, на которых отмечены положения звезд и основных кругов небесной сферы. У армиллярных сфер и глобусов есть общий недостаток: положение звезд и разметка кругов нанесены на их внешней, выпуклой стороне, которую мы рассматриваем снаружи, тогда как на небо мы смотрим «изнутри», и звезды нам кажутся размещенными на вогнутой стороне небесной сферы. Это иногда приводит к путанице направлений движения звезд и фигур созвездий.

Наиболее реалистическое представление небесной сферы дает планетарий. Оптическая проекция звезд на полусферический экран изнутри позволяет очень точно воспроизвести вид неба и всевозможные движения светил на нем.

Лабораторная работа

« ОСНОВНЫЕ ЭЛЕМЕНТЫ НЕБЕСНОЙ СФЕРЫ»

Цель работы: Изучение основных элементов и суточного вращения небесной сферы на ее модели.

Пособия: модель небесной сферы (или заменяющая ее небесная планисфера); черный глобус; подвижная карта звездного неба.

Краткие теоретические сведения:

Видимые положения небесных светил определяются относительно основных элементов небесной сферы.

К основным элементам небесной сферы (рис. 1) относятся:

Точки зенит Z и надир Z " , истинный или математический горизонт NESWN , ось мира РР" , полюсы мира (Р -северный и Р" - южный), небесный экватор QWQ " EQ небесный меридиан РZSР"Z"NР и точки пересечения небесного меридиана и небесного экватора с истинным горизонтом, т. е. точки юга S , севера N , востока Е и запада W .

Элементы небесной сферы могут быть изучены на ее модели (рис. 2), которая состоит из нескольких колец, изображающих основные круги небесной сферы. В кольце 1, изображающем небесный меридиан, жестко укреплена ось РР" - ось мира, вокруг которой вращается небесная сфера. Концевые точки Р и Р" этой оси лежат на небесном меридиане и представляют соответственно северный (Р ) и южный (Р" ) полюсы мира.

Металлический круг 8 изображает истинный или математический горизонт, который при работе с моделью небесной сферы должен всегда устанавливаться в горизонтальном положении. Ось мира образует с плоскостью истинного горизонта угол, равный географической широте у места наблюдения, и при установке модели на заданную географическую широту этот угол фиксируется винтом 11 , после чего истинный горизонт 8 приводится в горизонтальное положение поворотом кольца 1 (небесного меридиана), которое закрепляется в подставке 9 зажимом 10 .

Вокруг оси РР" (оси мира) свободно вращаются два скрепленных между собою кольца 2 и 3 , плоскости которых взаимно перпендикулярны. Эти кольца изображают круги склонения - большие круги, проходящие через полюсы мира. Хотя на небесной сфере через полюсы мира проходит бесчисленное множество кругов склонения, на модели небесной сферы выполнено только четыре круга склонения (в виде двух полных колец), по которым можно представить себе всю сферическую поверхность. Следует обратить внимание на то обстоятельство, что за круг склонения принимается не полная окружность, а лишь ее половина, заключенная между полюсами мира. Таким образом, два кольца модели изображают четыре круга склонения небесной сферы, отстоящие друг от друга на 90° ; они дают возможность демонстрировать экваториальные координаты небесных светил.

Кольцо 4 , плоскость которого перпендикулярна к оси мира, изображает небесный экватор. К нему под углом 23°,5 прикреплено кольцо 5 , представляющее эклиптику.

Кольца, изображающие небесный меридиан 1 , небесный экватор 4 , эклиптику 5 , круги склонения 2 и 3 и истинный горизонт 8 , являются большими кругами небесной сферы - их плоскости проходят через центр O модели, в котором мыслится наблюдатель.

Перпендикуляр к плоскости истинного горизонта, восставленный из центра O модели небесной сферы, пересекает небесный меридиан в точках, называемых зенитом Z (над головой наблюдателя) и надиром Z " (надир находится под ногами наблюдателя и скрыт от него земной поверхностью).

В зените, на небесном меридиане укрепляется подвижной рейтер 12 , со свободно вращающейся на нем дугой 13 , плоскость которой также проходит через центр модели небесной сферы. Дуга 13 изображает круг высоты (вертикал) и позволяет демонстрировать горизонтальные координаты небесных светил.

Помимо больших кругов на модели небесной сферы показаны два малых круга 6 и 7 -две небесных параллели, отстоящие от небесного экватора на 23°,5 . Остальные небесные параллели на модели не показаны. Плоскости небесных параллелен не проходят через центр небесной сферы, параллельны плоскости небесного экватора и перпендикулярны к оси мира.

К модели небесной сферы приложены две насадки, одна-в виде кружка, другая - в виде звездочки. Эти насадки служат для изображения небесных светил и могут быть укреплены на любом круге модели небесной сферы.

В дальнейшем все элементы модели небесной сферы именуются теми же терминами, которые приняты для соответствующих элементов небесной сферы.

Вследствие равномерного вращения Земли вокруг своей оси в направлении с запада на восток (или против часовой стрелки) наблюдателю представляется, что небесная сфера равномерно вращается вокруг оси мира РР" в обратном направлении, т. е. по часовой стрелке, если смотреть на нее извне со стороны северного полюса мира (или если наблюдатель в центре сферы обращен спиной к северному полюсу мира, а лицом - к югу). За сутки небесная сфера совершает один оборот; это ее кажущееся вращение называется суточным. Направление суточного вращения небесной сферы показано на рис. 1 стрелкой.

На модели небесной сферы можно четко уяснить себе, что хотя небесная сфера вращается как единое целое, большинство основных ее элементов в суточном вращении сферы не участвует, оставаясь неподвижными относительно наблюдателя. Небесный экватор вращается в своей плоскости вместе с небесной сферой, скользя в неподвижных точках востока E и запада W . В процессе суточного вращения все точки небесной сферы (кроме неподвижных точек) дважды в сутки пересекают небесный меридиан, один раз-южную его половину (к югу от северного полюса мира, дуга Р ZS Р" ), другой раз - северную его половину (к северу от северного полюса мира, дуга Р NZ " P " ). Эти прохождения точек через небесный меридиан называются, соответственно, верхней и нижней кульминацией. Через зенит Z и надир Z " проходят не все, а только определенные точки небесной сферы, склонение δ которых (как это будет видно в дальнейшем) равно географической широте φ места наблюдателя (δ = φ). Точки небесной сферы, находящиеся над истинным горизонтом, видны наблюдателю; полусфера, находящаяся под истинным горизонтом, наблюдениям недоступна (на рис. 1 она обозначена вертикальной штриховкой).

Дуга NES истинного горизонта, над которой точки небесной сферы поднимаются, называется восточной его половиной и простирается на 180º от точки севера N , через точку востока Е , до точки юга S . Противоположная, западная половина SWN истинного горизонта, за которую заходят точки небесной сферы, также содержит 180º и также ограничена точками юга S и севера N , но проходит через точку запада W . Восточную и западную половины истинного горизонта не следует смешивать с его сторонами, которые определяются по основным его точкам-точкам востока, юга, запада и севера.

Следует обратить особое внимание на то обстоятельство, что небесная сфера делится на северную и южную полусферы небесным экватором, а не истинным горизонтом, над которым всегда находятся области обеих полусфер, как северной, так и южной. Величина этих областей зависит от географической широты у места наблюдения: чем ближе к северному полюсу Земли находится место наблюдения (чем больше его φ), тем меньшая область южной небесной полусферы доступна наблюдениям, и тем большая область северной небесной полусферы одновременно видна над истинным горизонтом (а южном полушарии Земли - наоборот).

Продолжительность пребывания точек небесной сферы на протяжении суток над истинным горизонтом (и под ним) зависит от соотношения склонения δ этих точек с географической широтой φ места наблюдения, а для определенной φ -только от их склонения δ. Поскольку небесный экватор и истинный горизонт пересекаются в диаметрально противоположных точках, то любая точка небесного экватора (δ = 0°) всегда полусуток находится над истинным горизонтом и полусуток - под ним, независимо от географической широты у места наблюдения (кроме географических полюсов Земли, φ = ± 90°).

Для изучения основных элементов небесной сферы можно при отсутствии модели воспользоваться небесной планисферой (планшет 10), которая, конечно, не так наглядна, как пространственная модель, но все же может дать правильное представление об основных элементах и суточном вращении небесной сферы. Планисфера представляет собой ортогональную (прямоугольную) проекцию небесной сферы на плоскость небесного меридиана и состоит из круга SZNZ " , изображающего небесный меридиан, через центр О которого проведена отвесная линия ZZ " и след плоскости истинного горизонта N S . Точки востока Е и запада W проектируются в центр планисферы. Градусные деления на небесном меридиане дают высоту h альмукантаратов (малых кругов, параллельных истинному горизонту), которая над истинным горизонтом считается положительной (h > 0°), а под ним - отрицательной (h < 0°).

Ось мира РР" , небесный экватор QQ " и небесные параллели изображены в той же проекции на кальке, на которой пунктиром изображены также два положения эклиптики, соответствующие ее наивысшему ξξ") и наинизшему (ξоξо") положению над истинным горизонтом. Градусная оцифровка на кальке дает угловое расстояние небесных параллелей от небесного экватора, т. е. их склонение δ, считаемое в северной небесной полусфере - положительным (δ > 0°), а в южной небесной полусфере-отрицательным (δ < 0°).

Наложив кальку симметрично на круг небесного меридиана и повернув ее вокруг общего центра О на некоторый угол 90°- φ, мы получим вид небесной сферы (в проекции на плоскость небесного меридиана) на географической широте φ. Тогда сразу станет ясным расположение элементов небесной сферы относительно истинного горизонта NS и относительно наблюдателя, находящегося в центре О небесной сферы. Направление же суточного вращения небесной сферы вокруг оси мира приходится изображать стрелками вдоль небесного экватора и небесных параллелей.

Весьма полезно представить себе соответствие элементов небесной сферы точкам и кругам земной поверхности. Для наглядности этого соответствия лучше всего представить радиус небесной сферы сколь угодно большим, но не бесконечным, так как в случае бесконечно большого радиуса участки сферы вырождаются в плоскость. При сколь угодно большом радиусе небесной сферы наблюдатель О , находящийся в некоторой точке земной поверхности, видит небесную сферу так же, как и из центра Земли С (рис. 3), но с сохранением прежнего направления на зенит Z . Тогда становится ясным, что отвесная линия OZ является продолжением земного радиуса СО в месте наблюдения (Земля принимается за шар), ось мира РР" идентична земной оси вращения рр" , полюсы мира Р и Р" соответствуют географическим полюсам Земли р и р" , небесный экватор QQ " образован на небесной сфере плоскостью земного экватора qq " , а небесный меридиан Р Z Р" Z образован на небесной сфере плоскостью земного меридиана рО q р" q " p на котором находится наблюдатель О . Плоскость же истинного горизонта является касательной к поверхности Земли в точке наблюдения О . Этим и объясняется неподвижность небесного меридиана, зенита, надира и истинного горизонта относительно наблюдателя, которые вращаются вместе с ним вокруг земной оси. Полюсы мира Р и Р" также неподвижны относительно наблюдателя, поскольку они лежат на земной оси, не участвующей в суточном вращении Земли. Любой земной параллели kO с географической широтой а соответствует небесная параллель К Z . со склонением и δ = φ. Поэтому точки этой небесной параллели проходят через зенит места наблюдения О .

0 " style="border-collapse:collapse;border:none">

Название

Положение относительно наблюдателя

Расположение относительно истинного горизонта

3. На глобусе могут быть изображены:

4. На подвижной карте изображены:

Расположение небесных параллелей относительно

Суточное движение небесных светил относительно

Небесного экватора

Истинного горизонта

Небесного экватора

Истинного горизонта

Сходство

Различия

7. Соответствие точек и кругов:

Чертеж прилагается.

8. Три чертежа прилагаются.

Вспомогательная небесная сфера

Системы координат, используемые в геодезической астрономии

Географические широты и долготы точек земной поверхности и азимуты направлений определяются из наблюдений небесных светил – Солнца и звезд. Для этого необходимо знать положение светил как относительно Земли, так и относительно друг друга. Положения светил могут задаваться в целесообразно выбранных системах координат. Как известно из аналитической геометрии, для определения положения светила s можно использовать прямоугольную декартову систему координат XYZ или полярную a,b, R (рис.1).

В прямоугольной системе координат положение светила s определяется тремя линейными координатамиX,Y,Z. В полярной системе координат положение светила s задается одной линейной координатой, радиусом-вектором R = Оs и двумя угловыми: углом a между осью X и проекцией радиуса-вектора на координатную плоскость XOY, и углом b между координатной плоскостью XOY и радиусом-вектором R. Связь прямоугольных и полярных координат описывается формулами

X = R cos b cos a,

Y = R cos b sin a,

Z = R sin b,

где R=.

Эти системы используются в тех случаях, когда линейные расстояния R = Os до небесных светил известны (например, для Солнца, Луны, планет, искусственных спутников Земли). Однако для многих светил, наблюдаемых за пределами Солнечной системы, эти расстояния либо чрезвычайно велики по сравнению с радиусом Земли, либо неизвестны. Чтобы упростить решение астрономических задач и обходиться без расстояний до светил, полагают, что все светила находятся на произвольном, но одинаковом расстоянии от наблюдателя. Обычно это расстояние принимают равным единице, вследствие чего положение светил в пространстве может определяться не тремя, а двумя угловыми координатами a и b полярной системы. Известно, что геометрическое место точек, равноудаленных от данной точки “О”, есть сфера с центром в этой точке.

Вспомогательная небесная сфера – воображаемая сфера произвольного или единичного радиуса, на которую проецируются изображения небесных светил (рис. 2). Положение любого светила s на небесной сфере определяется при помощи двух сферических координат, a и b:

x = cos b cos a,

y = cos b sin a,

z = sin b.

В зависимости от того, где расположен центр небесной сферы О, различают:

1)топоцентрическую небесную сферу - центр находится на поверхности Земли;

2)геоцентрическую небесную сферу – центр совпадает с центром масс Земли;

3)гелиоцентрическую небесную сферу – центр совмещен с центром Солнца;

4) барицентрическую небесную сферу – центр находится в центре тяжести Солнечной системы.


Основные круги, точки и линии небесной сферы изображены на рис.3.

Одним из основных направлений относительно поверхности Земли является направление отвесной линии , или силы тяжести в точке наблюдения. Это направление пересекает небесную сферу в двух диаметрально противоположных точках - Z и Z". Точка Z находится над центром и называется зенитом , Z" – под центром и называетсянадиром .

Проведем через центр плоскость, перпендикулярную отвесной линии ZZ". Большой круг NESW, образованный этой плоскостью, называетсянебесным (истинным) или астрономическим горизонтом . Это есть основная плоскость топоцентрической системы координат. На ней имеются четыре точки S, W, N, E, где S - точка Юга , N - точка Севера , W - точка Запада , E - точка Востока . Прямая NS называетсяполуденной линией .

Прямая P N P S , проведенная через центр небесной сферы параллельно оси вращения Земли, называется осью Мира . Точки P N - северный полюс мира ; P S - южный полюс мира . Вокруг оси Мира происходит видимое суточное движение небесной сферы.

Проведем через центр плоскость, перпендикулярную оси мира P N P S . Большой круг QWQ"E, образованный в результате пересечения этой плоскостью небесной сферы, называетсянебесным (астрономическим) экватором . Здесь Q - верхняя точка экватора (над горизонтом), Q"- нижняя точка экватора (под горизонтом). Небесный экватор и небесный горизонт пересекаются в точках W и E.

Плоскость P N ZQSP S Z"Q"N, содержащая в себе отвесную линию и ось Мира, называется истинным (небесным) или астрономическим меридианом. Это плоскость параллельна плоскости земного меридиана и перпендикулярна к плоскости горизонта и экватора. Ее называютначальной координатной плоскостью.

Проведем через ZZ" вертикальную плоскость, перпендикулярную небесному меридиану. Полученный круг ZWZ"E называется первым вертикалом .

Большой круг ZsZ", по которому вертикальная плоскость, проходящая через светило s, пересекает небесную сферу, называетсявертикалом или кругом высот светила .

Большой круг P N sP S , проходящий через светило перпендикулярно небесному экватору, называется кругом склонения светила .

Малый круг nsn", проходящий через светило параллельно небесному экватору, называетсясуточной параллелью. Видимое суточное движение светил происходит вдоль суточных параллелей.

Малый круг аsа", проходящий через светило параллельно небесному горизонту, называется кругом равных высот , или альмукантаратом .

В первом приближении орбита Земли может быть принята за плоскую кривую - эллипс, в одном из фокусов которого находится Солнце. Плоскость эллипса, принимаемого за орбиту Земли, называетсяплоскостьюэклиптики .

В сферической астрономии принято говорить овидимом годичном движении Солнца. Большой круг ЕgЕ"d, по которому происходит видимое движение Солнца в течение года, называетсяэклиптикой . Плоскость эклиптики наклонена к плоскости небесного экватора на угол, примерно равный 23.5 0 . На рис. 4 показаны:

g – точка весеннего равноденствия;

d – точка осеннего равноденствия;

Е – точка летнего солнцестояния; Е" – точка зимнего солнцестояния; R N R S – ось эклиптики; R N - северный полюс эклиптики; R S - южный полюс эклиптики; e - наклон эклиптики к экватору.

Небесная сфера - воображаемая сфера произвольного радиуса, используемая в астрономии для описания взаимных положений светил на небосклоне. Для простоты расчетов ее радиус принимают равным единице; центр небесной сферы в зависимости от решаемой задачи совмещают со зрачком наблюдателя, с центром Земли, Луны, Солнца или вообще с произвольной точкой пространства.

Представление о небесной сфере возникло в глубокой древности. В основу его легло зрительное впечатление о существовании хрустального купола неба, на котором будто бы укреплены звезды. Небесная сфера в представлении древних народов была важнейшим элементом Вселенной. С развитием астрономии такой взгляд на небесную сферу отпал. Однако заложенная в древности геометрия небесной сферы в результате развития и совершенствования получила современный вид, в котором для удобства различных расчетов и используется в астрометрии.

Рассмотрим небесную сферу, как она представляется Наблюдателю в средних широтах с поверхности Земли (рис. 1).

Две прямые, положение которых может быть установлено экспериментально с помощью физических и астрономических инструментов, играют важную роль при определении понятий, связанных с небесной сферой. Первая из них - отвесная линия; это прямая, совпадающая в данной точке с направлением действия силы тяжести. Эта линия, проведенная через центр небесной сферы, пересекает ее в двух диаметрально противоположных точках: верхняя называется зенитом, нижняя - надиром. Плоскость, проходящая через центр небесной сферы перпендикулярно отвесной линии, называется плоскостью математического (или истинного) горизонта. Линия пересечения этой плоскости с небесной сферой называется горизонтом.

Второй прямой служит ось мира - прямая, проходящая через центр небесной сферы параллельно оси вращения Земли; вокруг оси мира происходит видимое суточное вращение всего небосвода. Точки пересечения оси мира с небесной сферой называются Северным и Южным полюсами мира. Наиболее приметная из звезд вблизи Северного полюса мира - Полярная звезда. Ярких звезд около Южного полюса мира нет.

Плоскость, проходящая через центр небесной сферы перпендикулярно оси мира, называется плоскостью небесного экватора. Линию пересечения этой плоскости с небесной сферой называют небесным экватором.

Напомним, что окружность, которая получается при пересечении небесной сферы плоскостью, проходящей через ее центр, называется в математике большим кругом, а если плоскость не проходит через центр, то получается малый круг. Горизонт и небесный экватор представляют собой большие круги небесной сферы и делят ее на два равных полушария. Горизонт делит небесную сферу на видимое и невидимое полушария. Небесный экватор делит ее соответственно на Северное и Южное полушария.

При суточном вращении небосвода светила вращаются вокруг оси мира, описывая на небесной сфере малые круги, называемые суточными параллелями; светила, удаленные от полюсов мира на 90°, движутся вдоль большого круга небесной сферы - небесного экватора.

Определив отвесную линию и ось мира, нетрудно дать определение всем остальным плоскостям и кругам небесной сферы.

Плоскость, проходящая через центр небесной сферы, в которой одновременно лежат и отвесная линия, и ось мира, Называется плоскостью небесного меридиана. Большой круг от пересечения этой плоскостью небесной сферы называют небесным меридианом. Та из точек пересечения небесного меридиана с горизонтом, которая находится ближе к Северному полюсу мира, называется точкой севера; диаметрально противоположная - точкой юга. Прямая, проходящая через эти точки, есть полуденная линия.

Точки горизонта, отстоящие на 90° от точек севера и юга, называются точками востока и запада. Эти четыре точки называют главными точками горизонта.

Плоскости, проходящие через отвесную линию, пересекают небесную сферу по большим кругам и называются вертикалами. Небесный меридиан является одним из вертикалов. Вертикал, перпендикулярный меридиану и проходящий через точки востока и запада, называют первым вертикалом.

По определению три основные плоскости - математического горизонта, небесного меридиана и первого вертикала - взаимно перпендикулярны. Плоскость же небесного экватора перпендикулярна лишь плоскости небесного меридиана, образуя с плоскостью горизонта двугранный угол. На географических полюсах Земли плоскость небесного экватора совпадает с плоскостью горизонта, а на экваторе Земли становится ей перпендикулярной. В первом случае, на географических полюсах Земли, ось мира совпадает с отвесной линией и за небесный меридиан может быть принят любой из вертикалов в зависимости от условий стоящей задачи. Во втором случае, на экваторе, ось мира лежит в плоскости горизонта и совпадает с полуденной линией; Северный полюс мира при этом совпадает с точкой севера, а Южный полюс мира - с точкой юга (см. рис.).

При использовании небесной сферы, центр которой совмещается с центром Земли или какой-либо другой точкой пространства, также возникает ряд особенностей, однако принцип введения основных понятий - горизонт, небесный меридиан, первый вертикал, небесный экватор и т. п. - остается прежним.

Основные плоскости и круги небесной сферы используются при введении горизонтальных, экваториальных и эклиптических небесных координат, а также при описании особенностей видимого суточного вращения светил.

Большой круг, образуемый при пересечении небесной сферы плоскостью, проходящей через ее центр и параллельной плоскости земной орбиты, называется эклиптикой. По эклиптике происходит видимое годичное движение Солнца. Точка пересечения эклиптики с небесным экватором, в которой Солнце переходит из Южного полушария небесной сферы в Северное, называют точкой весеннего равноденствия. Противоположная точка небесной сферы называется точкой осеннего равноденствия. Прямая, проходящая через центр небесной сферы перпендикулярно плоскости эклиптики, пересекает сферу в двух полюсах эклиптики: Северном полюсе - в Северном полушарии и Южном - в Южном полушарии.



Похожие статьи
 
Категории