Жидкостное дыхание под водой. Дыхание под водой – возможно

22.09.2019

МОСКВА, 25 дек — РИА Новости, Татьяна Пичугина. С тех пор как в 2016 году Фонд перспективных исследований (ФПИ) одобрил проект жидкостного дыхания, общественность живо интересуется его успехами. Недавняя демонстрация возможностей этой технологии буквально взорвала интернет. На встрече зампреда правительства Дмитрия Рогозина с президентом Сербии Александром Вучичем таксу погрузили на две минуты в аквариум со специальной жидкостью, насыщенной кислородом. После процедуры собака, по словам вице-премьера, жива и здорова. Что это была за жидкость?

"Ученые синтезировали несуществующие в природе вещества — перфторуглероды, в которых межмолекулярные силы настолько малы, что их считают чем-то промежуточным между жидкостью и газом. Они растворяют в себе кислород в 18-20 раз больше, чем вода", — рассказывает доктор медицинских наук Евгений Маевский, профессор, заведующий лабораторией энергетики биологических систем Института теоретической и экспериментальной биофизики РАН, один из создателей перфторана, так называемой голубой крови. Он работает над медицинскими приложениями перфторуглеродов с 1979 года.

При парциальном давлении в одну атмосферу в 100 миллилитрах воды растворяется всего 2,3 миллилитра кислорода. При тех же условиях перфторуглероды могут содержать до 50 миллилитров кислорода. Это делает их потенциально пригодными для дыхания.

"Например, при погружении на глубину через каждые 10 метров давление увеличивается как минимум на одну атмосферу. В итоге грудная клетка и легкие сожмутся до такой степени, что дышать в газовой среде станет невозможно. А если в легких находится переносящая газ жидкость, существенно большей плотности, чем воздух и даже вода, то они смогут функционировать. В перфторуглеродах можно растворить кислород без примеси азота, которого много в воздухе и растворение которого в тканях является одной из наиболее существенных причин кессонной болезни при подъеме с глубины", — продолжает Маевский.

Кислород будет поступать в кровь из жидкости, наполняющей легкие. В ней же может растворяться переносимый кровью углекислый газ.

Принцип дыхания жидкостью прекрасно освоен рыбами. Их жабры пропускают через себя колоссальный объем воды, забирают растворенный там кислород и отдают в кровь. У человека нет жабр, а весь газообмен идет через легкие, площадь поверхности которых примерно в 45 раз превосходит площадь поверхности тела. Чтобы прогнать через них воздух, мы делаем вдох и выдох. В этом нам помогают дыхательные мышцы. Поскольку перфторуглероды плотнее, чем воздух, то дышать на поверхности с их помощью весьма проблематично.

"В этом и состоят наука и искусство подобрать такие перфторуглероды, чтобы облегчить работу дыхательных мышц и не допустить повреждения легких. Многое зависит от длительности процесса дыхания жидкостью, от того, насильственно или спонтанно оно происходит", — заключает исследователь.

Однако принципиальных препятствий к тому, чтобы человек дышал жидкостью, нет. Евгений Маевский полагает, что продемонстрированную технологию российские ученые доведут до практического применения в ближайшие несколько лет.

От реанимации до спасения подводников

Ученые стали рассматривать перфторуглероды как альтернативу дыхательным газовым смесям в середине прошлого века. В 1962 году вышла голландского исследователя Йоханнеса Килстры (Johannes Kylstra) "О мышах-рыбах" (Of mice as fish), где описан опыт с грызуном, помещенным в насыщенный кислородом солевой раствор при давлении 160 атмосфер. Животное оставалось живым в течение 18 часов. Затем Килстра стал экспериментировать с перфторуглеродами, и уже в 1966 году в детском госпитале Кливленда (США) физиолог Леланд Кларк (Leland C. Clark) попытался применить их, чтобы наладить дыхание новорожденных, больных муковисцидозом. Это генетическое заболевание, при котором ребенок рождается с недоразвитыми легкими, его альвеолы схлопываются, что препятствует дыханию. Легкие таких пациентов промывают физраствором, насыщенным кислородом. Кларк решил, что лучше делать это кислородсодержащей жидкостью. Этот исследователь впоследствии много сделал для развития жидкостного дыхания.

© 20th Century Fox Film Corporation Кадр из фильма "Бездна"

© 20th Century Fox Film Corporation

В начале 1970-х "дыхательной" жидкостью заинтересовались в СССР, в значительной мере благодаря руководителю лаборатории ленинградского НИИ переливания крови Зое Александровне Чаплыгиной. Этот институт стал одним из лидеров проекта по созданию кровезаменителей — переносчиков кислорода на основе эмульсий перфторуглеродов и растворов модифицированного гемоглобина.

Над применением этих веществ для промывания легких активно работали в Институте сердечно-сосудистой хирургии Феликс Белоярцев и Халид Хапий.

"В наших экспериментах у мелких животных несколько страдали легкие, но все они выживали", — вспоминает Евгений Маевский.

Систему дыхания с помощью жидкости разрабатывали по закрытой тематике в институтах Ленинграда и Москвы, а с 2008 года — на кафедре аэрогидродинамики Самарского государственного аэрокосмического университета. Там сделали капсулу типа "Русалка" для отработки жидкостного дыхания в случае экстренного спасения подводников с большой глубины. С 2015 года разработку испытывали в Севастополе по теме "Терек", поддерживаемой ФПИ.

Наследие атомного проекта

Перфторуглероды (перфторуглеводороды) — это органические соединения, где все атомы водорода замещены на атомы фтора. Это подчеркивает латинская приставка "пер-", означающая завершенность, целостность. Эти вещества не обнаружены в природе. Их пытались синтезировать еще в конце XIX века, но реально преуспели только после Второй мировой, когда они понадобились для атомной промышленности. Их производство в СССР наладил академик Иван Людвигович Кнунянц, основатель лаборатории фторорганических соединений в ИНЭОС РАН.

"Перфторуглероды использовали в технологии получения обогащенного урана. В СССР их крупнейшим разработчиком был Государственный институт прикладной химии в Ленинграде. В настоящее время их выпускают в Кирово-Чепецке и Перми", — говорит Маевский.

Внешне жидкие перфторуглероды выглядят как вода, но ощутимо более плотные. Они не вступают в реакцию с щелочами и кислотами, не окисляются, разлагаются при температуре более 600 градусов. Фактически их считают химически инертными соединениями. Благодаря этим свойствам перфторуглеродные материалы применяют в реанимационной и регенеративной медицине.

"Есть такая операция — бронхиальный лаваж, когда человеку под наркозом промывают одно легкое, а потом другое. В начале 80-х вместе с волгоградским хирургом А. П. Савиным мы пришли к выводу, что эту процедуру лучше делать перфторуглеродом в виде эмульсии", — приводит пример Евгений Маевский.

Эти вещества активно применяют в офтальмологии, для ускорения заживления ран, при диагностике заболеваний, в том числе онкологических. В последние годы метод ЯМР-диагностики с применением перфторуглеродов разрабатывают за рубежом. В нашей стране эти исследования успешно проводит коллектив ученых из МГУ им. М. В. Ломоносова под руководством академика Алексея Хохлова, ИНЭОС, ИТЭБ РАН и ИИФ (Серпухов).

Нельзя не упомянуть и то, что из этих веществ делают масла, смазки для систем, работающих в условиях высоких температур, включая реактивные двигатели.

«Далеко не все так просто, как было представлено сегодня. Бедная собачка». Такими словами специалисты комментируют эксперимент, продемонстрированный Дмитрием Рогозиным президенту Сербии как пример новейших научных разработок России: собака смогла дышать не воздухом, а жидкостью. Что представляет собой эта технология и может ли она помочь российским военным?

В ходе встречи в Москве с президентом Сербии Александром Вучичем вице-премьер Дмитрий Рогозин во вторник ряд новейших разработок российского Фонда перспективных исследований (ФПИ). Рогозин отметил, что сербского гостя могли бы свозить на какое-нибудь огромное промышленное предприятие, но куда интереснее «показать тот самый завтрашний день, куда мы стремимся». Таким «гвоздем программы» стал уникальный проект жидкостного дыхания, который был впервые продемонстрирован публично.

Как пояснил руководитель проекта военно-морской врач Федор Арсеньев, задача данного изобретения состоит в спасении экипажа гибнущей подводной лодки. Как известно, с глубины ниже 100 метров невозможно быстро подняться на поверхность из-за кессонной болезни. Чтобы избежать ее, на подлодке можно будет надеть аппарат с «не содержащей азота жидкостью», как передал ТАСС . Легкие человека при этом не будут сжиматься, что позволит быстро подняться на поверхность и спастись.

На глазах у сербского президента в особый резервуар с жидкостью была помещена собака – такса. За несколько минут она освоилась и начала самостоятельно «дышать» жидкостью. После сотрудники лаборатории вынули пса из резервуара, вытерли полотенцем, и президент Сербии смог лично убедиться, что собака в порядке. Вучич погладил пса и признался, что очень впечатлен.

Мечта про «человека-амфибию»

«Жидкостное дыхание как медицинская технология подразумевает вентиляцию легких не воздухом, а насыщенной кислородом жидкостью. В рамках проекта решается научная задача по изучению особенностей влияния различных переносящих кислород веществ на газообмен и другие функции клеток, тканей и органов млекопитающих», – рассказали газете ВЗГЛЯД в отделе по связям с общественностью Фонда перспективных исследований (ФПИ).

Одним из направлений является формирование медико-биологических основ технологии самостоятельной эвакуации подводников с больших глубин на поверхность, отметили в ФПИ, но технология способна вообще заметно продвинуть исследование человеком ранее не изученных морских и океанских глубин. Утверждается, что данная разработка понадобится и в медицине – например, поможет выходить недоношенных детей или людей, получивших ожоги дыхательных путей, найдет применение в лечении бронхообструктивных, инфекционных и других тяжелых заболеваний.

Нужно отметить, что жидкостное дыхание на первый взгляд кажется фантастическим вымыслом, но на самом деле имеет научную основу, и под эту идею подведена серьезная теоретическая база. Вместо кислорода ученые предлагают использовать особые химические соединения, которые способны хорошо растворять кислород и углекислый газ.

«Жидкостное дыхание» давно стало идеей фикс для ученых всего мира. Прибор «человека-амфибии» способен спасать аквалангистов и подводников, а в перспективе пригодится в длительных космических полетах. Разработки велись в 1970–1980-е годы в СССР и США, эксперименты проводились на животных, но больших успехов добиться не удалось.

Член-корреспондент РАЕН, кандидат медицинских наук Андрей Филиппенко, который продолжительное время работает над проектом жидкостного дыхания, признавался ранее газете «Совершенно секретно» , что о разработках практически ничего нельзя говорить из-за их закрытости. Но то, что средства аварийного спасения экипажей безнадежно устарели и нуждаются в скорейшей модернизации, показала трагедия подлодки «Курск».

Напомним, ранее сообщалось о других смелых проектах ФПИ, в частности это «конструктор» для создания и самолета будущего.

Наверху должна ждать реанимация

«Технология не один десяток лет отрабатывалась, но для этого нужны очень хорошо подготовленные люди. Когда человеку вливают в легкие эту жидкость – будет автоматически срабатывать инстинкт самосохранения, спазмы перекрывают горло, организм сопротивляется изо всех сил. Обычно это делается под наблюдением врачей. На людях такие опыты проводились в единичных случаях, а в основном они отрабатывались на животных», – пояснил газете ВЗГЛЯД глава Комитета при правительстве РФ по проведению подводных работ особого назначения в 1992–1994 гг., доктор технических наук, профессор, вице-адмирал Тенгиз Борисов.

«Как правило, вставляется в гортань специальная трубка, с помощью которой легкие медленно заполняются этой жидкостью, – сказал Борисов, добавив:

– При этом организм всячески сопротивляется, нужны препараты, которые блокируют спазмы, нужны анестетики. Далеко не все так просто, как было представлено сегодня. Бедная собачка».

«Если человек всплывет из подводной лодки, то он действительно избежит кессонной болезни, но самостоятельно спасаться подводники в любом случае не смогут. Нужно: а) исключительно грамотные люди на подводной лодке, б) наверху должна ждать, грубо говоря, команда реанимации, которая будет выкачивать из человека эту жидкость и заставлять его дышать обычным способом», – добавил эксперт.

«Думаю, в медицине эту технологию куда легче внедрить и применять в условиях стационара, когда рядом есть специалисты и большое количество необходимой аппаратуры. А вот спасение экипажа затонувшей субмарины такими методами в обозримом будущем крайне маловероятно», – заключил Борисов.

Разрабатываемая Фондом перспективных исследований (ФПИ) система жидкостного дыхания поможет подводникам быстро подниматься на поверхность без кессонной болезни. Антропоморфный робот Фёдор примет участие в испытаниях нового российского космического корабля и может помочь Росатому в утилизации ядерных отходов. Подводный аппарат для экстремальных глубин будет испытан на дне Марианской впадины. О проектах ФПИ «Известиям» рассказал председатель научно-технического совета фонда Виталий Давыдов.

- Сколько проектов реализовано фондом и какие из них вы бы отметили особо?

В разной стадии выполнения у нас находится около 50 проектов. Еще 25 завершены. Полученные результаты переданы или передаются заказчикам. Созданы демонстраторы технологий, получено порядка 400 результатов интеллектуальной деятельности. Диапазон тематик - от погружения на дно Марианской впадины до космоса.

Из реализованных проектов можно назвать, например, успешно проведенные в прошлом году совместно с ведущим предприятием ракетного двигателестроения НПО «Энергомаш» испытания ракетного детонационного двигателя. Параллельно впервые в мире фонд получил устойчивый рабочий режим демонстратора детонационного воздушно-реактивного двигателя. Если первый предназначен для космической техники, то второй - для авиационной. Гиперзвуковые летательные аппараты, использующие такие системы, столкнутся с множеством проблем. Например, с высокими температурами. Фонд нашел решение этих проблем, использовав эффект термоэмиссии - преобразования тепловой энергии в электрическую. Фактически мы получаем электроэнергию для питания систем аппарата и одновременно охлаждаем элементы планера и двигатель.

- Один из самых известных проектов Фонда - робот Фёдор. Его создание завершено?

Да, работы по Фёдору завершены. Сейчас идет передача МЧС полученных результатов. Причем оказалось, что они заинтересовали не только МЧС, но и другие министерства, а также госкорпорации. Многие, наверное, слышали, что технологии Фёдора будут использованы «Роскосмосом» для создания робота-испытателя, который отправится в полет на новом российском пилотируемом космическом корабле «Федерация». Большой интерес к роботу проявил «Росатом». Ему нужны технологии, обеспечивающие возможность работы в условиях, опасных для человека. Например, при утилизации ядерных отходов.

- Можно ли использовать Фёдора для спасения экипажей подлодок, обследования затонувших кораблей?

Технологии, полученные при создании Фёдора, могут быть использованы для различных целей. Фонд реализует ряд проектов, связанных с подводными необитаемыми аппаратами. И в принципе технологии антропоморфного робота могут быть в них интегрированы. В частности, предусматривается создание подводного аппарата для работы на экстремальных глубинах. Мы намерены испытать его в Марианской впадине. При этом не просто опуститься на дно, как наши предшественники, а обеспечить возможность передвижения в придонной области и проведения научных исследований. Такого еще никто не делал.

В США разрабатывается четырехногий робот для перевозки грузов BigDog. Ведутся ли в ФПИ аналогичные разработки?

Что касается шагающих платформ для переноски грузов или боеприпасов, то фонд такую работу не ведет. Но некоторые организации, с которыми мы сотрудничаем, в инициативном порядке занимались подобными разработками. Вопрос о том, нужен ли подобный робот на поле боя, остается открытым. В большинстве случаев выгоднее использовать колесные или гусеничные машины.

- Какие робототехнические платформы создаются в ФПИ, помимо Фёдора?

У нас разрабатывается целый спектр платформ различного назначения. Это и наземные, и воздушные, и морские роботы. Выполняющие задачи разведки, транспортировки грузов, а также способные вести боевые действия. Одним из направлений работ в этой области является определение облика и отработка способов применения дронов, включая групповой. Думаю, что если всё будет идти теми же темпами, уже в ближайшее время произойдет существенное расширение применения дронов в том числе и для решения боевых задач.

- ФПИ разрабатывает атмосферный спутник «Сова» - большой электросамолет. Как идут его испытания?

-Испытания демонстратора беспилотного аппарата «Сова» завершены. Состоялся длительный полет на высоте около 20 тыс. м. К сожалению, аппарат попал в зону сильной турбулентности и получил серьезные повреждения. Но к этому времени мы уже получили все необходимые данные, убедились как в перспективности самого направления исследований, так и правильности выбранных конструктивных решений . Полученный опыт будет использован при создании и испытании полноразмерного аппарата.

Предприятие «Роскосмоса» НПО им. Лавочкина ведет аналогичную разработку - создает атмосферный спутник «Аист». Вы следите за разработкой конкурентов?

Мы в курсе этих работ, поддерживаем связь с разработчиками «Аиста». Речь идет не о конкуренции, а о взаимном дополнении.

Могут ли подобные аппараты использоваться в арктической зоне, где нет связи и инфраструктуры для частых взлетов-посадок?

Необходимо учитывать, что весной и осенью, а тем более в условиях полярной ночи «атмосферный спутник» может просто не получить энергии, необходимой для зарядки батарей. Это ограничивает его применение.

Недавно общественности были продемонстрированы технологии жидкостного дыхания – погружение таксы в специальную насыщенную кислородом жидкость. Демонстрация «утопления» вызвала волну протестов. Продолжатся ли после этого работы в данном направлении?

-Работы по жидкостному дыханию продолжаются. На основе нашей разработки могут быть спасены тысячи жизней. И речь идет не только о подводниках, которые благодаря жидкостному дыханию смогут без последствий в виде кессонной болезни оперативно подняться на поверхность. Есть целый ряд заболеваний и травм легких, при лечении которых можно добиться успеха с помощью жидкостного дыхания. Интересны перспективы использования технологии жидкостного дыхания для быстрого охлаждения организма, когда необходимо замедлить протекающие в нем процессы. Сейчас это делается за счет внешнего охлаждения или ввода в кровь специального раствора. Можно то же самое, но более эффективно, делать с помощью заполнения легких охлажденной дыхательной смесью.

Руководитель лаборатории ФПИ по созданию жидкостного дыхания Антон Тоньшин с таксой по кличке Николас, с помощью которой ученые Фонда перспективных исследований (ФПИ) изучали возможности жидкостного дыхания

Надо отметить, что нет никакого нанесения вреда здоровью животных, участвующих в данных экспериментах. Все «экспериментаторы» живы. Часть из них содержится в лаборатории, где их состояние контролируют. Многие стали домашними питомцами сотрудников, но при этом их состояние также периодически отслеживается нашими специалистами. Результаты наблюдений свидетельствуют об отсутствии негативных последствий жидкостного дыхания. Технология отработана, и мы перешли к созданию специальных устройств для ее практической реализации.

- Когда перейдете к исследованиям жидкостного дыхания на людях?

Теоретически мы готовы к таким экспериментам, но для их начала необходимо по крайней мере создать и отработать соответствующее оборудование.

В свое время ФПИ разработал программную платформу для проектирования различной техники, призванную заменить иностранный софт. Используется ли она где-то?

Работы по созданию единой среды российского инженерного программного обеспечения «Гербарий» действительно завершены. Сейчас рассматривается вопрос о ее использовании в «Росатоме» и «Роскосмосе» - для проектирования перспективных образцов продукции атомной промышленности, а также ракетно-космической техники.

- Работает ли фонд в области технологий дополненной реальности?

-Да, фонд ведет такие работы - в частности, совместно с «КамАЗом». Одна из наших лабораторий создала прототип очков дополненной реальности, которые обеспечивают контроль сборки агрегатов для автомобиля. Программа подсказывает, какую деталь нужно взять и куда ее установить. Если оператор совершает неправильные действия, например отступает от установленного порядка сборки изделия или неверно устанавливает его элементы, звучит звуковое оповещение о неверном шаге, а на очки выводится информация об ошибке. При этом факт неправильных действий или даже их попытка фиксируется в электронном журнале. В итоге должна быть создана система, исключающая возможность неправильной сборки. В дальнейшем мы намерены развивать указанную систему в направлении миниатюризации, заменить очки на более совершенные устройства.

Перспективы вычислительной техники сейчас связывают с развитием квантовых компьютеров, а защиты информации - с квантовой криптографией. Развивает ли ФПИ эти направления?

Фонд занимаемся проблематикой, связанной с квантовыми вычислениями, созданием соответствующей элементной базы. Что касается квантовой связи, у всех на слуху опыты китайских коллег. Но и мы не стоим на месте.

Еще осенью 2016 года ФПИ и «Ростелеком» обеспечили квантовую передачу информации по оптико-волоконному кабелю между Ногинском и Павловским Посадом. Эксперимент прошел успешно. Сегодня можно уже поговорить по квантовому телефону. Важной особенностью квантовой передачи информации является невозможность ее перехвата.

В ходе упомянутого эксперимента квантовая связь была обеспечена на расстоянии около 30 км. Технически нет проблем осуществить ее и на большей дальности. Готовимся провести сеанс связи по атмосферному каналу. Прорабатываем возможность эксперимента по квантовой связи из космоса с использованием потенциала Международной космической станции.

Ихтиандры среди нас. Российские ученые начали испытывать технологию жидкостного дыхания у подводников. Опыты сейчас пока проходят на собаках. Рекорд дыхания в жидкости — уже 30 минут. Как чудеса из романов и фильмов претворяются в жизнь, выяснял корреспондент «Вестей ФМ» Сергей Гололобов.

Наблюдение за экспериментом. Таксу погружают в ванну с жидкостью мордой вниз. Удивительно, но собака не захлебнулась, а начала дышать той самой жидкостью. Заглатывая её судорожно, рывками. Но ведь дышала. Спустя 15 минут ее вытащили. Собака была вялой, причем, скорее, от переохлаждения, но, главное, живой. А спустя некоторое время и во все пришла в свое обычное игривое настроение. Чудо. Что-то похожее демонстрировалось в знаменитом голливудском фильме «Бездна» 1989 года. Там, залив в колбу с водой некие присадки, запускали туда белую крысу. Причем снято все натурально. И крыса действительно дышала якобы под водой.

А хитрость этого эпизода из фильма «Бездна» в том, что крыса дышала не водой как таковой, а некой специальной жидкостью. Именно на этом и основывается технология жидкостного дыхания. Наиболее подходящими веществами для этой цели считаются перфторуглеродные соединения. Они хорошо растворяют в себе кислород и углекислый газ и не приносят вред организму. То есть живые существа вдыхают не воду, а те самые жидкие углероды. Для чего это нужно людям, рассказал врач-пульмонолог, руководитель научной темы по жидкостному дыханию еще с восьмидесятых годов Андрей Филиппенко.

«Это нужня для спасения подводников. При большом давлении, если у них будет в легких жидкость, если они из этой жидкости извлекут кислород, то они смогут выйти на большой глубине, и быстро, без всякой декомпрессионной проблемы подняться к поверхности».

Известно, что выход с больших глубин у водолазов и подводников занимает часы. Если же подниматься на поверхность быстро, то вас настигнет кессонная болезнь. Попадающие с дыхательной смесью в кровь пузырьки азота вскипают из-за резкого перепада давления и разрушают сосуды. Если использовать аппарат со специальной дыхательной жидкостью, таких проблем не возникнет, поясняет Андрей Филиппенко.

«Фторуглеродная жидкость является носителем, так сказать, азот-кислорода, то есть переносчиком. Но в отличие от азота, который переходит в ткань организма при большом давлении, на глубине, и из-за этого возникает кессонная болезнь, здесь этого нет. То есть нет причин для кессонной болезни. Нет пересыщения инертным газом организма. То есть нет принципиально причин для пузырьков».

Опыты по жидкостному дыханию активно велись, начиная с 60-х, в Советском Союзе и США. Но дальше экспериментов с животными дело не доходило. После развала Союза у нас научный поиск в этом направлении сошел на нет. Но очень мощные наработки остались. И сейчас их решено использовать по новой, говорит Андрей Филиппенко.

«Большой задел по технологии жидкостного дыхания, и по жидкостям. И плюс еще у нас еще есть последствия этих жидкостей. Потому что все вводимые в кровь фторуглероды, а у нас уже 25 лет используется такое вещество, выходят через легкие. То есть мы знаем и последствия влияния на организм введения в него перфторуглеродов. У американцев или французов, англичан таких данных нет».

Недавно российские ученые создали специальную капсулу для собак, которую погружали в гидрокамеру с повышенным давлением. И сейчас собаки могут без последствий для здоровья более получаса дышать на глубине до полукилометра. А вскоре планируется перейти к экспериментам на людях. Самое страшное — это, конечно, заставить себя вдохнуть жидкость, размышляет президент Конфедерации подводной деятельности России Валентин Сташевский:

«Когда воду вдыхаешь, это просто кошмар. Это значит первый путь к тому, чтобы утонуть. Так было по всем историческим предшествующим событиям. Захлебываешься, как только вода попадает в дыхательные пути и так далее».

Тем не менее, желающие стать фактически утопленниками, но при этом начать дышать как человек-амфибия, ну или Садко, у нас есть, отмечает Андрей Филиппенко.

«Добровольцы есть. Но давайте сразу уточним, добровольцами здесь могут быть только те люди, которые очень хорошо понимают, что может произойти. То есть это фактически могут быть только те врачи, которые много занимались жидкостным дыханием. Вот такие в нашей команде есть. И не один. Нужно только правильно всё оорганизовать».

Сейчас работы по жидкостному дыханию переданы в НИИ медицины труда. Основная цель исследований — создать специальный скафандр, который пригодится не только подводникам, но и летчикам, а также космонавтам. Но, повторим, речь идет о дыхании специальными жидкостями. Дышать непосредственно водой, как ихтиандр, пока человеку недоступно.

Жизнь на нашей планете зародилась, по-видимому, в воде - в среде, где запасы кислорода весьма скудны. При атмосферном давлении содержание кислорода в воздухе на уровне моря составляет 200 миллилитров на литр, а в литре поверхностного слоя воды растворено меньше семи миллилитров кислорода.

Первые обитатели нашей планеты, приспособившись к водной среде, дышали жабрами, назначение которых — экстрагировать максимальное количество кислорода из воды.

В ходе эволюции животные освоили богатую кислородом атмосферу суши и начали дышать легкими. Функции дыхательных органов остались прежними.

Как в легких, так и в жабрах кислород через тонкие мембраны проникает из окружающей среды в кровеносные сосуды, а углекислый газ выбрасывается из крови в окружающую среду. Итак, и в жабрах и в легких протекают одни и те же процессы. Отсюда возникает вопрос: смогло бы животное с легкими дышать в водной среде, если бы в ней содержалось достаточное количество кислорода?

Ответ на этот вопрос заслуживает внимания по нескольким причинам. Во-первых, мы смогли бы узнать, почему дыхательные органы сухопутных животных так отличаются по строению от соответствующих органов водных животных.

Кроме того, ответ на этот вопрос имеет и чисто практический интерес. Если бы специально подготовленный человек смог дышать в водной среде, то это облегчило бы и освоение глубин океана и путешествия к далеким планетам. Все это и послужило основанием к постановке ряда экспериментов по изучению возможности дыхания сухопутных млекопитающих водой.

Проблемы при дыхании водой

Эксперименты проводились в лабораториях Нидерландов и США. Дыхание водой связано с двумя основными проблемами. Об одной уже говорилось: при обычном атмосферном давлении в воде растворено слишком мало кислорода.

Вторая проблема заключается в том, что вода и кровь — жидкости с очень различными физиологическими свойствами. При «вдохе» вода может повредить ткани легких и вызвать фатальные изменения объема и состава находящихся в организме жидкостей.

Предположим, мы приготовили специальный изотонический раствор, где состав солей такой же, как и в плазме крови. Под большим давлением раствор насыщают кислородом (его концентрация примерно такая же, как в воздухе). Сможет ли животное дышать таким раствором?

Первые подобные эксперименты были проведены в Лейденском университете. Через шлюз, подобный спасательному шлюпу подводной лодки, мышей вводили в камеру, заполненную специально подготовленным раствором, и который под давлением был введен кислород. Через прозрачные стенки камеры можно было наблюдать за поведением мышей.

В первые несколько мгновений животные пытались выбраться на поверхность, но им мешала проволочная сетка. После первых волнений мыши успокаивались и, казалось, не очень страдали в подобной ситуации. Они совершали медленные, ритмичные дыхательные движения, по-видимому, вдыхая и выдыхая жидкость. Некоторые из них прожили в таких условиях в течение многих часов.

Главная трудность дыхания водой

После ряда опытов стало ясно, что решающим фактором, определяющим продолжительность жизни мышей, является не недостаток кислорода (который мог быть введен в раствор в любом нужном количестве простым повышением его парциального давления), а трудность выделения из организма углекислого газа в необходимой степени.

Мышь, прожившая самое длительное время - 18 часов,- находилась в растворе, в который было добавлено небольшое количество органического буфера, трис(оксиметил)аминометана. Последний сводит к минимуму неблагоприятный эффект накопления углекислого газа в организме животных. Снижение температуры раствора до 20 С (примерно половина нормальной температуры тела мыши) также способствовало продлению жизни.

В данном случае это обусловливалось общим замедлением процессов обмена веществ.

Обычно в литре выдыхаемого животным воздуха содержится 50 миллилитров углекислого газа. При прочих равных условиях (температура, парциальное давление углекислого газа) в одном литре солевого раствора, идентичного по своему солевому составу крови, растворяется только 30 миллилитров этого газа.

Значит, чтобы выделить необходимое количество углекислого газа, животное должно вдыхать воды вдвое больше, чем воздуха. (А ведь для прокачивания жидкости через бронхиальные сосуды требуется в 36 раз больше энергии, так как вязкость воды в 36 раз превышает вязкость воздуха.)

Отсюда очевидно, что даже при отсутствии турбулентного движения жидкости в легких для дыхания водой необходимо в 60 раз больше энергии, чем для дыхания воздухом.

Поэтому нет ничего удивительного в том, что подопытные животные постепенно ослабевали, а потом - вследствие истощения и накопления в организме углекислого газа — дыхание прекращалось.

Результаты эксперимента

На основании проведенных опытов нельзя было судить о том, какое количество кислорода поступает в легкие, насколько насыщена им артериальная кровь и какова степень накопления в крови животных углекислого газа. Постепенно мы подошли к серии более совершенных экспериментов.

Они проводились на собаках в большой камере, снабженной дополнительным оборудованием. Камера наполнялась воздухом под давлением в 5 атмосфер. Здесь же находилась ванна с солевым раствором, насыщенным кислородом. В нее погружали подопытное животное. Перед экспериментом, чтобы снизить общую потребность организма в кислороде, собак анестезировали и охлаждали до 32°С.

Во время погружения собака совершала бурные дыхательные движения. Струйки воды, поднимающиеся с поверхности, ясно показывали, что она прокачивала раствор через легкие. По окончании эксперимента собаку вытаскивали из ванны, удаляли из легких воду и вновь наполняли их воздухом. Из шести животных, подвергшихся испытанию, одно выжило. Собака дышала в воде 24 минуты.

Результаты эксперимента можно сформулировать следующим образом: в определенных условиях животные, которые дышат воздухом, в течение ограниченного промежутка времени могут дышать водой. Главный недостаток водного дыхания - накопление углекислого газа в организме.

Во время опыта давление крови выжившей собаки было несколько меньше нормального, но оставалось постоянным; пульс и дыхание были медленными, но равномерными, артериальная кровь насыщена кислородом. Содержание углекислого газа в крови постепенно увеличивалось.

Это означало, что бурная дыхательная деятельность собаки была недостаточной для удаления необходимых количеств углекислого газа из организма.

Новая серия опытов дыхания водой

В Нью-Йоркском государственном университете я продолжил работу совместно с Германом Рааном, Эдвардом X. Ланфиром и Чарльзом В. Паганелли. В новой серии опытов были применены приборы, позволившие получить конкретные данные по газообмену, происходящему в легких собаки при дыхании жидкостью. Как и прежде, животные дышали солевым раствором, насыщенным кислородом под давлением в 5 атмосфер.

Газовый состав вдыхаемой и выдыхаемой жидкости определяли на входе и выходе раствора из легких собак. Насыщенная кислородом жидкость попадала в организм находящейся под наркозом собаки через резиновую трубку, вставленную в трахею. Поток регулировался клапанным насосом.

При каждом вдохе раствор под действием силы тяжести стекал в легкие, а при выдохе жидкость по такому же принципу поступала в специальный приемник. Количество кислорода, поглощенного в легких, и количество выделенного углекислого газа определяли как разность соответствующих величин в равных объемах вдыхаемой и выдыхаемой жидкости.

Животных не охлаждали. Оказалось, что в этих условиях собака экстрагирует примерно такое же количество кислорода из воды, как обычно из воздуха. Как и следовало ожидать, животные не выдыхали достаточного количества углекислого газа, поэтому содержание его в крови постепенно увеличивалось.

По окончании эксперимента, продолжительность которого доходила до сорока пяти минут, воду из легких собаки удаляли через специальное отверстие в трахее. Легкие продували несколькими порциями воздуха. Дополнительных процедур по «оживлению» не проводили. Шесть из шестнадцати собак перенесли эксперимент без видимых последствий.

Взаимодействие трех элементов

Дыхание и рыб и млекопитающих основано на сложном взаимодействии трех элементов:

1) потребности организма в газообмене,

2) физических свойств окружающей среды и

3) строения органов дыхания.

Чтобы подняться выше чисто интуитивной оценки значения строения органов в процессе приспособления, необходимо точно понимать все эти взаимодействия. Следует, очевидно, поставить такие вопросы. Как молекула кислорода попадает из окружающей среды в кровь? Каков ее точный путь? Ответить на эти вопросы куда более сложно, чем можно предположить.

При расширении грудной клетки в легкие животного попадает воздух (или вода). Что же происходит с жидкостью, попавшей в пограничные воздушные мешочки легких? Рассмотрим это явление на простом примере.

Если в частично заполненный водой шприц медленно вводить через иглу небольшое количество чернил, то они сначала образуют тоненькую струйку в центре сосуда. После прекращения «вдоха» чернила постепенно распространяются по всему объему воды.

Если же чернила вводить быстро, так, чтобы поток был турбулентным, смешивание произойдет, конечно, гораздо быстрее. На основании полученных данных, а также учитывая размер бронхиальных трубок, можно заключить, что вдыхаемый поток воздуха или воды входит в воздушные мешочки медленно, без турбулентности.

Следовательно, можно предположить, что при вдохе свежего воздуха (или воды) молекулы кислорода сначала сосредоточатся в центре воздушных мешочков (альвеол). Теперь им предстоит преодолеть посредством диффузии значительные расстояния, прежде чем они достигнут стенок, через которые попадут в кровь.

Эти расстояния во много раз больше толщины мембран, отделяющих в легких воздух от крови. Если вдыхаемой средой является воздух, это не имеет большого значения: кислород распределяется равномерно по всей альвеоле за миллионные доли секунды.

Скорость распространения газов в воде в 6 тысяч раз меньше, чем в воздухе. Поэтому при дыхании водой возникает разность парциальных давлений кислорода в центральной и периферийной областях. Вследствие малой скорости диффузии газов давление кислорода в центре альвеолы с каждым циклом дыхания становится выше,чем у стенок. Концентрация же углекислого газа, уходящего из крови, больше у стенок альвеолы, чем в центре.

Газообмен в легких

Такие теоретические предпосылки возникли на основании изучения газового состава выдыхаемой жидкости во время экспериментов на собаках. Воду, вытекающую из легких собаки, собирали в длинную трубку.

При этом оказалось, что в первой порции воды, поступившей, по-видимому, из центральной части альвеол, кислорода больше, чем в последней, поступившей от стенок. При дыхании собак в воздушной среде ощутимой разницы в составах первой и последней порций выдыхаемого воздуха не наблюдалось.

Интересно отметить, что газообмен, происходящий в легких собаки при дыхании водой, очень напоминает процесс, протекающий в простой капле воды, когда на ее поверхности осуществляется обмен: кислород - углекислый газ. На основании такой аналогии была построена математическая модель легких, а в качестве функциональной единицы выбрана сфера с диаметром примерно в один миллиметр.

Расчет показал, что легкие составляют около полумиллиона таких сферических газообменных ячеек, передача газа в которых осуществляется только при помощи диффузии. Вычисленное количество и размер этих ячеек близко совпадают с количеством и размером определенных структур легких, называемых «первичными дольками» (лобулями).

По-видимому, эти дольки и являются главными функциональными единицами легких. Аналогично — с привлечением анатомических данных — можно построить математическую модель жабр рыб, первичные газообменные единицы которых будут иметь соответственно другую форму.

Построение математических моделей позволило провести четкую грань между органами дыхания млекопитающих и рыб. Оказывается, главное заключается в геометрической структуре дыхательных ячеек. Это становится особенно очевидным при исследовании зависимости, связывающей потребность рыбы в газообмене, а свойства окружающей среды с формой органов дыхания рыб.

В уравнение, выражающее данную зависимость, входят такие величины, как доступность кислорода, то есть его концентрация, скорость диффузии и растворимость в окружающей животное среде.

Объем вдыхаемого воздуха или воды, число и размер газообменных ячеек, количество кислорода, поглощаемого ими, и, наконец, давление кислорода в артериальной крови. Предположим, что рыбы имеют в качестве органов дыхания не жабры, а легкие.

Подставив в уравнение реальные данные газообмена, протекающего при дыхании рыбы, мы обнаружим, что рыба с легкими не сможет жить в воде, так как расчет показывает полное отсутствие кислорода в артериальной крови вашей модели рыбы.

Значит, в предположении была ошибка, а именно: выбранная форма газообменной ячейки оказалась неверной. Рыбы живут в воде благодаря жабрам, состоящим из плоских, тонких, плотно упакованных пластинок. В такой структуре - в отличие от сферических ячеек легких - не возникает проблемы диффузии газов.

Животное с органами дыхания, подобными легким, может выжить в воде только в том случае, если потребность его организма в кислороде крайне мала. В качестве примера назовем голотурию (морской огурец).

Жабры дают рыбам возможность жить в воде, и эти же жабры не позволяют им существовать вне воды. На воздухе они разрушаются под действием силы тяжести. Поверхностное натяжение на границе воздух - вода вызывает слипание плотно упакованных жаберных пластинок.

Общая площадь жабр, доступная для газообмена, уменьшается настолько, что рыба не может дышать, несмотря на обилие кислорода в воздухе. Альвеолы легких предохраняются от разрушения, во-первых, грудной клеткой, во-вторых, выделяющимся в легких смачивающим агентом, который значительно уменьшает поверхностное натяжение.

Дыхание млекопитающих в воде

Изучение процессов дыхания млекопитающих в воде дало, таким образом, новые сведения об основных принципах дыхания вообще. С другой стороны, возникло реальное предположение, что человек сможет без вредных последствий ограниченное время дышать жидкостью. Это позволит водолазам спускаться на значительно большие глубины океана, чем сейчас.

Главная опасность глубоководного погружения связана с давлением воды на грудную клетку и легкие. В результате в легких повышается давление газов, и часть газов попадает в кровь, что приводит к серьезным последствиям. При высоких давлениях большинство газов токсично для организма.

Так, азот, попадающий в кровь водолаза, вызывает интоксикацию уже на глубине 30 метров и практически выводит его из строя на глубине 90 метров благодаря возникающему азотному наркозу. (Эта проблема может быть решена использованием редких газов, таких, как гелий, которые не токсичны даже при очень высоких концентрациях.)

Кроме того, если водолаз возвращается слишком быстро с глубины на поверхность, газы, растворенные в крови и тканях, выделяются в виде пузырьков, вызывая кессонную болезнь.

Этой опасности можно избежать, если водолаз будет дышать не воздухом, а жидкостью, обогащенной кислородом. Жидкость в легких выдержит значительные внешние давления, а объем ее при этом практически не изменится. В таких условиях водолаз, опускаясь на глубину в несколько сот метров, сможет быстро, без всяких последствий вернуться на поверхность.

В доказательство того, что кессонная болезнь не возникает при дыхании водой, в моей лаборатории были проведены следующие опыты. В экспериментах с мышью, которая дышала жидкостью, давление в 30 атмосфер в течение трех секунд доводили до одной атмосферы. Признаков заболевания не наблюдалось. Такая степень изменения давления эквивалентна эффекту подъема с глубины 910 метров со скоростью 1 100 километров в час.

Человек может дышать водой

Дыхание жидкостью может пригодиться человеку во время будущих путешествий в космос. При возвращении с далеких планет, например, с Юпитера, возникнет потребность в огромных ускорениях, позволяющих выйти из зоны притяжения планеты. Эти ускорения значительно больше того, что может вынести организм человека, особенно легко уязвимые легкие.

Но те же нагрузки станут вполне допустимыми, если легкие будут заполнены жидкостью, а тело космонавта погружено в жидкость с плотностью, равной плотности крови, подобно тому, как плод погружен в амниотическую жидкость материнской утробы.

Итальянские физиологи Рудольф Маргариа, Т. Гволтеротти и Д. Спинелли в 1958 году ставили такой опыт. Стальной цилиндр, в котором находились беременные крысы, бросали с разных высот на свинцовую опору. Целью эксперимента было проверить, выживет ли плод в условиях резкого торможения и толчка при приземлении. Скорость торможения вычисляли по глубине вдавливания цилиндра в свинцовую основу.

Сами животные в ходе опыта немедленно погибали. Вскрытия показывали значительное повреждение легких. Однако освобожденные хирургическим путем эмбрионы были живыми и развивались нормально. Плод, защищенный утробной жидкостью, способен перенести отрицательные ускорения до 10 тысяч g.

После экспериментов, показавших, что сухопутные животные могут дышать жидкостью, резонно предположить такую возможность и для человека. В настоящее время мы располагаем некоторыми прямыми доказательствами в пользу этого предположения. Так, например, нами используется сейчас новый метод лечения некоторых заболеваний легких.

Метод состоит в промывании одного легкого солевым раствором, удаляющим патологические выделения из альвеол и бронхов. Второе легкое дышит при этом газообразным кислородом.

Успешное осуществление этой операции вдохновило нас поставить эксперимент, на который добровольно вызвался мужественный водолаз — глубинник Фрэнсис Д. Фалейчик.

Под наркозом в его трахею был введен двойной катетер, каждая трубка которого доходила до легких. При нормальной температуре тела воздух в одном легком заменили 0,9-процентным раствором поваренной соли. «Дыхательный цикл» заключался в ведении солевого раствора в легкое и последующем удалении его.

Цикл был повторен семь раз, причем для каждого «вдоха» брали 500 миллилитров раствора. Фалейчик, находившийся в течение всей процедуры в полном сознании, рассказал, что он не заметил значительной разницы между легким, дышащим воздухом, и легким, дышащим водой. Он не испытывал также неприятных ощущений при входе и выходе потока жидкости из легкого.

Конечно, этот опыт еще очень далек от попытки осуществить процесс дыхания обоими легкими в воде, но он показал, что заполнение легких человека солевым раствором, если процедура выполнена правильно, не вызывает серьезных разрушений тканей и не производит неприятных ощущений.

Самая трудная проблема дыхания водой

Вероятно, самая трудная проблема, которую предстоит разрешить, связана с выделением из легких углекислого газа при дыхании водой. Как мы уже говорили, вязкость воды примерно в 36-40 раз больше вязкости воздуха. Это значит, что легкие будут прокачивать воду, по крайней мере, в сорок раз медленнее, чем воздух.

Другими словами, здоровый молодой водолаз, способный вдыхать 200 литров воздуха в минуту, сможет вдохнуть в минуту всего 5 литров воды. Вполне очевидно, что при таком дыхании углекислый газ не будет выделяться в достаточном количестве, даже если человек целиком погружен в воду.

Можно ли разрешить эту проблему использованием среды, в которой углекислый газ растворяется лучше, чем в воде? В некоторых сжиженных синтетических фтороуглеродах углекислого газа растворяется, например, в три раза больше, чем в воде, а кислорода - в тридцать раз. Леланд С. Кларк и Франк Голлан показали, что мышь может жить в содержащем кислород жидком фтористом углероде при атмосферном давлении.

Во фтористом углероде не только содержится больше кислорода, чем в воде, но в этой среде в четыре раза выше и скорость диффузии газа. Однако и здесь по-прежнему остается камнем преткновения малая пропускная способность жидкости через легкие: фтороуглероды обладают еще большей вязкостью, чем солевой раствор.

Перевод с английского Н. Познанской.



Похожие статьи
 
Категории