Золотое сечение — что это такое? Числа Фибоначчи — это? Что общего между спиралью ДНК, ракушкой, галактикой и Египетскими пирамидами? Исследовательская работа "загадка чисел фибоначчи".

30.09.2019

Итальянский математик Леонардо Фибоначчи жил в 13 столетии и одним из первых в Европе стал использовать арабские (индийские) цифры. Он придумал несколько искусственную задачу о кроликах, которых выращивают на ферме, причем все они считаются самками, самцы игнорируются. Кролики начинают размножаться после того, как им исполняется два месяца, а потом каждый месяц рожают по кролику. Кролики никогда не умирают.

Нужно определить, сколько кроликов будет на ферме через n месяцев, если в начальный момент времени был только один новорожденный кролик.

Очевидно, что фермер имеет одного кролика в первый месяц и одного кролика – во второй месяц. На третий месяц будет уже два кролика, на четвертый – три и т.д. Обозначим количество кроликов в n месяце как . Таким образом,
,
,
,
,
, …

Можно построить алгоритм, позволяющий найти при любомn .

Согласно условию задачи общее количество кроликов
вn +1 месяце раскладывается на три составляющие:

    одномесячные кролики, не способные к размножению, в количестве

;


Таким образом, получим

. (8.1)

Формула (8.1) позволяет вычислить ряд чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, …

Числа в данной последовательности называются числами Фибоначчи .

Если принять
и
, то с помощью формулы (8.1) можно определить все остальные числа Фибоначчи. Формула (8.1) называется рекуррентной формулой (recurrence – «возвращение» на латыни).

Пример 8.1. Предположим, что имеется лестница в n ступенек. Мы можем подниматься по ней с шагом в одну ступеньку, либо – с шагом в две ступеньки. Сколько существует комбинаций различных способов подъема?

Если n = 1, имеется только один вариант решения задачи. Для n = 2 существует 2 варианта: два единичных шага либо один двойной. Для n = 3 существует 3 варианта: три единичных шага, либо один единичный и один двойной, либо один двойной и один единичный.

В следующем случае n = 4, имеем 5 возможностей (1+1+1+1, 2+1+1, 1+2+1, 1+1+2, 2+2).

Для того чтобы ответить на заданный вопрос при произвольном n , обозначим количество вариантов как , и попробуем определить
по известными
. Если мы стартуем с единичного шага, то имеем комбинаций для оставшихсяn ступенек. Если стартуем с двойного шага, то имеем
комбинаций для оставшихсяn –1 ступенек. Общее количество вариантов для n +1 ступенек равно

. (8.2)

Полученная формула как близнец напоминает формулу (8.1). Тем не менее, это не позволяет отождествлять количество комбинаций с числами Фибоначчи. Мы видим, например, что
, но
. Однако имеет место следующая зависимость:

.

Это справедливо для n = 1, 2, и также справедливо для каждого n . Числа Фибоначчи и количество комбинаций вычисляются по одной и той же формуле, однако начальные значения
,
и
,
у них различаются.

Пример 8.2. Этотпример имеет практическое значение для задач помехоустойчивого кодирования. Найдем число всех двоичных слов длины n , не содержащих несколько нулей подряд. Обозначим это число через . Очевидно,
, а слова длины 2, удовлетворяющие нашему ограничению, таковы: 10, 01, 11, т.е.
. Пусть
– такое слово изn символов. Если символ
, то
может быть произвольным (
)-буквенным словом, не содержащим несколько нулей подряд. Значит, число слов с единицей на конце равно
.

Если же символ
, то обязательно
, а первые
символа
могут быть произвольными с учетом рассматриваемых ограничений. Следовательно, имеется
слов длины n с нулем на конце. Таким образом, общее число интересующих нас слов равно

.

С учетом того, что
и
, полученная последовательность чисел – это числа Фибоначчи.

Пример 8.3. В примере 7.6 мы нашли, что число двоичных слов постоянного веса t (и длиной k ) равно . Теперь найдем число двоичных слов постоянного весаt , не содержащих несколько нулей подряд.

Рассуждать можно так. Пусть
число нулей в рассматриваемых словах. В любом слове имеется
промежутков между ближайшими нулями, в каждом из которых находится одна или несколько единиц. Предполагается, что
. В противном случае нет ни одного слова без рядом стоящих нулей.

Если из каждого промежутка удалить ровно по одной единице, то получим слово длины
, содержащеенулей. Любое такое слово может быть получено указанным образом из некоторого (и притом только одного)k -буквенного слова, содержащего нулей, никакие два из которых не стоят рядом. Значит, искомое число совпадает с числом всех слов длины
, содержащих ровнонулей, т.е. равно
.

Пример 8.4. Докажем,что сумма
равна числам Фибоначчи для любого целого. Символ
обозначаетнаименьшее целое число, большее или равное . Например, если
, то
; а если
, то
ceil («потолок»). Также встречается символ
, который обозначаетнаибольшее целое число, меньшее или равное . По-английски эту операцию называютfloor («пол»).

Если
, то
. Если
, то
. Если
, то
.

Таким образом, для рассмотренных случаев сумма действительно равна числам Фибоначчи. Теперь приведем доказательство для общего случая. Поскольку числа Фибоначчи можно получить с помощью рекуррентного уравнения (8.1), то должно выполняться равенство:

.

И оно действительно выполняется:

Здесь мы использовали полученную ранее формулу (4.4):
.

      Сумма чисел Фибоначчи

Определим сумму первых n чисел Фибоначчи.

0+1+1+2+3+5 = 12,

0+1+1+2+3+5+8 = 20,

0+1+1+2+3+5+8+13 = 33.

Легко заметить, что прибавлением к правой части каждого уравнения единицы мы снова получаем число Фибоначчи. Общая формула для определения суммы первых n чисел Фибоначчи имеет вид:

Докажем это, используя метод математической индукции. Для этого запишем:

Эта сумма должна быть равна
.

Сократив левую и правую часть уравнения на –1, получим уравнение (6.1).

      Формула для чисел Фибоначчи

Теорема 8.1. Числа Фибоначчи можно рассчитать по формуле

.

Доказательство . Убедимся в справедливости этой формулы для n = 0, 1, а затем докажем справедливость данной формулы для произвольного n по индукции. Вычислим отношение двух ближайших чисел Фибоначчи:

Мы видим, что отношение этих чисел колеблется около значения 1.618 (если игнорировать несколько первых значений). Этим свойством числа Фибоначчи напоминают члены геометрической прогрессии. Примем
, (
). Тогда выражение

преобразуется в

которое после упрощений выглядит так

.

Мы получили квадратное уравнение, корни которого равны:

Теперь можем записать:

(где c является константой). Оба члена и не дают чисел Фибоначчи, например
, в то время как
. Однако разность
удовлетворяет рекуррентному уравнению:

Для n =0 эта разность дает, то есть:
. Однако при n =1 мы имеем
. Чтобы получить
, необходимо принять:
.

Теперь мы имеем две последовательности: и
, которые начинаются с одинаковых двух чисел и удовлетворяют одной и той же рекуррентной формуле. Они должны быть равны:
. Теорема доказана.

При возрастании n член становится очень большим, в то время как
, и роль членав разности сокращается. Поэтому при больших n приближенно можем записать

.

Мы игнорируем 1/2 (поскольку числа Фибоначчи возрастают до бесконечности при росте n до бесконечности).

Отношение
называется золотым сечением , его используют за пределами математики (например, в скульптуре и архитектуре). Золотым сечением является отношение между диагональю и стороной правильного пятиугольника (рис. 8.1).

Рис. 8.1. Правильный пятиугольник и его диагонали

Для обозначения золотого сечения принято использовать букву
в честь известного афинского скульптора Фидия.

      Простые числа

Все натуральные числа, большие единицы, распадаются на два класса. К первому относятся числа, имеющие ровно два натуральных делителя, единицу и самого себя, ко второму – все остальные. Числа первого класса называют простыми , а второго – составными . Простые числа в пределах первых трех десятков: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, …

Свойства простых чисел и их связь со всеми натуральными числами изучалась Евклидом (3 век до нашей эры). Если выписывать простые числа подряд, то можно заметить, что относительная плотность их убывает. На первый десяток их приходится 4, т. е. 40%, на сотню – 25, т.е. 25%, на тысячу – 168, т.е. меньше 17%, на миллион – 78498, т.е. меньше 8%, и т.д.. Тем не менее, их общее число бесконечно.

Среди простых чисел попадаются пары таких, разность между которыми равна двум (так называемые простые близнецы ), однако конечность или бесконечность таких пар не доказана.

Евклид считал очевидным, что с помощью умножения только простых чисел можно получить все натуральные числа, причем каждое натуральное число представимо в виде произведения простых чисел единственным образом (с точностью до порядка множителей). Таким образом, простые числа образуют мультипликативный базис натурального ряда.

Изучение распределения простых чисел привело к созданию алгоритма, позволяющего получать таблицы простых чисел. Таким алгоритмом является решето Эратосфена (3 век до нашей эры). Этот метод заключается в отсеивании (например, путем зачеркивания) тех целых чисел заданной последовательности
, которые делятся хотя бы на одно из простых чисел, меньших
.

Теорема 8 . 2 . (теорема Евклида). Число простых чисел бесконечно .

Доказательство . Теорему Евклида о бесконечности числа простых чисел докажем способом, предложенным Леонардом Эйлером (1707–1783). Эйлер рассмотрел произведение по всем простым числам p :

при
. Это произведение сходится, и если его раскрыть, то в силу однозначности разложения натуральных чисел на простые сомножители получается, что оно равняется сумме ряда, откуда следует тождество Эйлера:

.

Так как при
ряд справа расходится (гармонический ряд), то из тождества Эйлера следует теорема Евклида.

Русский математик П.Л. Чебышев (1821–1894) вывел формулу, определяющую пределы, в которых заключено число простых чисел
, не превосходящихX :

,

где
,
.

Экология жизни. Познавательно: Природа (в том числе и Человек) развивается по законам, которые заложены в этой числовой последовательности...

Числа Фибоначчи - числовая последовательность, где каждый последующий член ряда равен сумме двух предыдущих, то есть: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368,.. 75025,.. 3478759200, 5628750625,.. 260993908980000,.. 422297015649625,.. 19581068021641812000,.. Изучением сложных и удивительных свойств чисел ряда Фибоначчи занимались самые различные профессиональные ученые и любители математики.

В 1997 году несколько странных особенностей ряда описал исследователь Владимир Михайлов, который был убежден, что Природа (в том числе и Человек) развивается по законам, которые заложены в этой числовой последовательности .

Замечательным свойством числового ряда Фибоначчи является то, что по мере увеличения чисел ряда отношение двух соседних членов этого ряда асимптотически приближается к точной пропорции Золотого сечения (1:1,618) - основе красоты и гармонии в окружающей нас природе, в том числе и в человеческих отношениях.

Отметим, что сам Фибоначчи открыл свой знаменитый ряд, размышляя над задачей о количестве кроликов, которые в течении одного года должны родиться от одной пары. У него получилось, что в каждом последующем месяце после второго число пар кроликов в точности следует цифровому ряду, которое ныне носит его имя. Поэтому не случайно, что и сам человек устроен по ряду Фибоначчи. Каждый орган устроен в соответствии с внутренней, или внешней двойственностью.

Числа Фибоначчи привлекли математиков своей особенностью возникать в самых неожиданных местах. Замечено, например, что отношения чисел Фибоначчи, взятых через одно, соответствуют углу между соседними листьями на стебле растений, точнее, они говорят, какую долю оборота составляет этот угол: 1/2 - для вяза и липы, 1/3 - для бука, 2/5 - для дуба и яблони, 3/8 - для тополя и розы, 5/13 - для ивы и миндаля и т. д. Эти же числа вы найдете при подсчете семян в спиралях подсолнуха, в количестве лучей, отражающихся от двух зеркал, в количестве вариантов маршрутов переползания пчелы от одной соты к другой, во многих математических играх и фокусах.



В чем разница между спиралями золотого сечения и спиралью Фибоначчи? Спираль золотого сечения идеальна. Она соответствует Первоисточнику гармонии. Эта спираль не имеет ни начала, ни конца. Она бесконечна. Спираль Фибоначчи имеет начало, от которого она начинает “раскрутку”. Это очень важное свойство. Оно позволяет Природе после очередного замкнутого цикла осуществлять строительство новой спирали с “нуля”.

Следует сказать, что спираль Фибоначчи может быть двойной. Существуют многочисленные примеры этих двойных спиралей, встречающихся повсюду. Так, спирали подсолнухов всегда соотносятся с рядом Фибоначчи. Даже в обычной сосновой шишке можно увидеть эту двойную спираль Фибоначчи. Первая спираль идет в одну сторону, вторая - в другую. Если посчитать число чешуек в спирали, вращающейся в одном направлении, и число чешуек в другой спирали, можно увидеть, что это всегда два последовательных числа ряда Фибоначчи. Число этих спиралей 8 и 13. В подсолнухах встречаются пары спиралей: 13 и 21, 21 и 34, 34 и 55, 55 и 89. И отклонений от этих пар не бывает!..

У Человека в наборе хромосом соматической клетки (их 23 пары) источником наследственных болезней являются 8, 13 и 21 пары хромосом...

Но почему в Природе именно этот ряд играет решающую роль? На этот вопрос может дать исчерпывающий ответ концепция тройственности, определяющая условия ее самосохранения. При нарушении «баланса интересов» триады одним из ее «партнеров», «мнения» двух других «партнеров» должны быть скорректированы. Особенно наглядно концепция тройственности проявляется в физике, где из кварков построили «почти» все элементарные частицы. Если вспомнить, что отношения дробных зарядов кварковых частиц составляют ряд, а это и есть первые члены ряда Фибоначчи, которые необходимы для формирования других элементарных частиц.

Возможно, что спираль Фибоначчи может играть решающую роль и в формировании закономерности ограниченности и замкнутости иерархических пространств. Действительно, представим, что на каком-то этапе эволюции спираль Фибоначчи достигла совершенства (она стала неотличима от спирали золотого сечения) и по этой причине частица должна трансформироваться в следующую «категорию».

Эти факты еще раз подтверждают, что закон о двойственности дает не только качественные, но и количественные результаты. Они заставляют задуматься о том, что окружающий нас Макромир и Микромир эволюцирует по одним и тем же законам - законам иерархии, и что эти законы едины для живой и для неживой материи.



Все это свидетельствует о том, что ряд чисел Фибоначчи представляет собой некий зашифрованный закон природы .

Цифровой код развития цивилизации можно определить с помощью различных методов в нумерологии. Например, с помощью приведения сложных чисел к однозначным (например, 15 есть 1+5=6 и т.д.). Проводя подобную процедуру сложения со всеми сложными числами ряда Фибоначчи, Михайлов получил следующий ряд этих чисел: 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 8, 1, 9, затем все повторяется 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 4, 8, 8,.. и повторяется вновь и вновь... Этот ряд также обладает свойствами ряда Фибоначчи, каждый бесконечно последующий член равен сумме предыдущих. Например, сумма 13-го и 14-го членов равна 15, т.е. 8 и 8=16, 16=1+6=7. Оказывается, что этот ряд периодичный, с периодом в 24 члена, после чего, весь порядок цифр повторяется. Получив этот период, Михайлов выдвинул интересное предположение - не является ли набор из 24 цифр своеобразным цифровым кодом развития цивилизации? опубликовано

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека. Любовь к окружающим и к себе, как чувство высоких вибраций - важный фактор оздоровления - сайт

Последовательность Фибоначчи , известная всем по фильму "Код Да Винчи" - ряд цифр, описанный в виде загадки Итальянским математиком Леонардо Пизанским, более известным под прозвищем Фибоначчи, в XIII веке. Вкратце суть загадки:

Кто-то поместил пару кроликов в некоем замкнутом пространстве, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что каждый месяц пара кроликов производит на свет другую пару, а способность к производству потомства у них появляется по достижению двухмесячного возраста.


В итоге получается такой ряд цифр: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 , где через запятую показано количество пар кроликов в каждом из двенадцати месяцев. Его можно продолжать бесконечно долго. Его суть в том, что каждое следующее число является суммой двух предыдущих.

У этого ряда есть несколько математических особенностей, которых обязательно нужно коснуться. Он асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

Так отношение какого-либо члена ряда к предшествующему ему колеблется около числа 1,618 , через pаз то превосходя, то не достигая его. Отношение к следующему аналогично приближается к числу 0,618 , что обратно пропорционально 1,618 . Если мы будем делить элементы через одно, то получим числа 2,618 и 0,382 , которые так же являются обратно пропорциональными. Это так называемые коэффициенты Фибоначчи.

К чему всё это? Так мы приближаемся к одному из самых загадочных явлений природы. Смекалистый Леонардо по сути не открыл ничего нового, он просто напомнил миру о таком явлении, как Золотое Сечение , которое не уступает по значимости теореме Пифагора.

Все окружающие нас предметы мы различаем в том числе и по форме. Какие-то нам нравятся больше, какие-то меньше, некоторые вовсе отталкивают взгляд. Иногда интерес может быть продиктован жизненной ситуацией, а порой красотой наблюдаемого объекта. Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.


Если мы примем весь отрезок c за 1 , то отрезок a будет равен 0,618 , отрезок b - 0,382 , только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618 ; 1/0,618=1,618 ) . Отношение c к a равно 1,618 , а с к b 2,618 . Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Изображение: marcus-frings.de

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.


Ничего не напоминает?


Фото: ethanhein on Flickr

И не только в раковине моллюска можно найти спирали Архимеда, а во многих цветах и растениях, просто они не такие явные.

Алое многолистный:


Фото: brewbooks on Flickr


Фото: beart.org.uk
Фото: esdrascalderan on Flickr
Фото: mandj98 on Flickr

И тут самое время вспомнить о Золотом Сечении! Ни одни ли из самых прекрасных и гармоничных творений природы изображены на этих фотографиях? И это далеко не все. Присмотревшись, можно найти похожие закономерности во многих формах.

Конечно заявление, что все эти явление построены на последовательности Фибоначчи звучит слишком громко, но тенденция на лицо. Да и к тому же сама она далека от совершенства, как и всё в этом мире.

Есть предположение, что ряд Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотосечённой логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любого ряда достаточно знать три его члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности является степенью Золотой Пропорции (z ). Часть ряда выглядит примерно так: ... z -5 ; z -4 ; z -3 ; z -2 ; z -1 ; z 0 ; z 1 ; z 2 ; z 3 ; z 4 ; z 5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восемью, потом тринадцатью, 21, 34, 55...

Источники: ; ; ;

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«КРИВЛЯНСКАЯ СРЕДНЯЯ ШКОЛА»

ЖАБИНКОВСКОГО РАЙОНА

ЧИСЛА ФИБОНАЧЧИ И ЗОЛОТОЕ СЕЧЕНИЕ

Исследовательская работа

Работу выполнила:

учащаяся 10 класса

Садовничик Валерия Алексеевна

Руководитель:

Лавренюк Лариса Николаевна,

учитель информатики и

математики 1 квалификационной

Числа Фибоначчи и природа

Характерной чертой строения растений и их развития является спиральность. Еще Гёте, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявлением самой сокровенной сущности жизни. Спирально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спирали расположены семечки в подсолнечнике, спиральные движения (нутации) наблюдаются при росте корней и побегов.

На первый взгляд может показаться, что число листьев, цветков может изменяться в очень широких пределах и принимать любые значения. Но такой вывод оказывается несостоятельным. Исследования показали, что число одноименных органов в растениях не является произвольным, существуют значения, часто встречающиеся и значения, которые встречаются очень редко.

В живой природе широко распространены формы, основанные на пентагональной симметрии – морские звезды, морские ежи, цветы.

Фот.13 . Лютик

В ромашке число лепестков 55 или 89.

Фот.14 . Ромашка

Пиретрум имеет 34 лепестка.

Фот. 15. Пиретрум

Посмотрим на сосновую шишку. Чешуйки на ее поверхности расположены строго закономерно - по двум спиралям, которые пересекаются приблизительно под прямым углом. Число таких спиралей у сосновых шишек равно 8 и 13 или 13 и 21.

Фот.16 . Шишка

В корзинках подсолнечника семена также расположены по двум спиралям, их число составляет обычно 34/55, 55/89.

Фот.17 . Подсолнух

Присмотримся к ракушкам. Если пересчитать число «ребер жесткости» у первой, взятой наугад ракушки - получилось 21. Возьмем вторую, третью, пятую, десятую ракушку - у всех будет 21 ребро на поверхности. Видно, моллюски были не только хорошими инженерами, они «знали» числа Фибоначчи.

Фот.18 . Ракушка

Здесь вновь мы видим закономерное сочетание чисел Фибоначчи, расположенных рядом: 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89. Их отношение в пределе стремится к золотой пропорции, выраженной числом 0,61803…

Числа Фибоначчи и животные

Число лучей у морских звезд отвечает ряду чисел Фибоначчи или очень близко к ним и равно 5,8, 13,21,34,55.

Фот.19 . Морская звезда

Современные членистоногие очень разнообразны. У лангуста также пять пар ног, на хвосте пять перьев, брюшко делится на пять сегментов, а каждая нога состоит из пяти частей.

Фот. 20. Лангуст

У некоторых насекомых брюшко состоит из восьми сегментов, имеется три пары конечностей, состоящих из восьми частей, а из ротового отверстия выходят восемь различных усикоподобных органов. У нашего хорошо знакомого комара - три пары ног, брюшко делится на восемь сегментов, на голове пять усиков - антенн. Личинка комара членится на 12 сегментов.

Фот. 21. Комар

У мухи капустной брюшко членится на пять частей, имеется три пары ног, а личинка разделена на восемь сегментов. Каждое из двух крыльев разделено тонкими прожилками на восемь частей.

Гусеницы многих насекомых членятся на 13 сегментов, например, у шкуроеда, мукоеда, козявки мавританской. У большинства жуков-вредителей гусеница членится на 13 сегментов. Очень характерно строение ног у жуков. Каждая нога состоит из трех частей, как и у высших животных, - из плечевой, предплечья и лапы. Тонкие, ажурные лапы жуков членятся на пять частей.

Ажурные, прозрачные, невесомые крылья стрекозы - это шедевр «инженерного» мастерства природы. Какие же пропорции положены в основу конструкции этого крохотного летательного мускулолета? Отношение размаха крыльев к длине тела у многих стрекоз равно 4/3. Тело стрекозы делится на две основные части: массивный корпус и длинный тонкий хвост. В корпусе выделяется три части: голова, грудь, брюшко. Брюшко разбито на пять сегментов, а хвост состоит из восьми частей. Сюда еще необходимо добавить три пары ног с их членением на три части.

Фот. 22. Стрекоза

Нетрудно увидеть в этой последовательности членения целого на части развертывание ряда чисел Фибоначчи. Длина хвоста, корпуса и общая длина стрекозы связаны между собой золотой пропорцией: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.

Неудивительно, что стрекоза выглядит столь совершенной, ведь она создана по законам золотой пропорции.

Вид черепахи на фоне покрытого трещинами такыра - явление удивительное. В центре панциря большое овальное поле с крупными сросшимися роговыми пластинами, а по краям - кайма из более мелких пластинок.

Фот. 23. Черепаха

Возьмите любую черепаху - от близкой нам болотной до гигантской морской, суповой черепахи - и вы убедитесь, что рисунок на панцире у них аналогичный: на овальном поле расположено 13 сросшихся роговых пластин - 5 пластин в центре и 8 - по краям, а на периферийной кайме около 21 пластинки (у чилийской черепахи по периферии панциря точно 21 пластина). На лапах у черепах по 5 пальцев, а позвоночный столб состоит из 34 позвонков. Нетрудно заметить, что все указанные величины отвечают числам Фибоначчи. Следовательно, развитие черепахи, формирование ее тела, членение целого на части осуществлялось по закону ряда чисел Фибоначчи.

Высшим типом животных на планете являются млекопитающие. Число ребер у многих видов животных равно или близко к тринадцати. У совершенно разных млекопитающих - кита, верблюда, оленя, тура - число ребер составляет 13 ± 1. Число позвонков меняется очень сильно, особенно за счет хвостов, которые могут быть различной длины даже у одного и того же вида животного. Но у многих из них число позвонков равно или близко к 34 и 55. Так, 34 позвонка у гигантского оленя, 55 - у кита.

Скелет конечностей домашних животных состоит из трех тождественных костных звеньев: плечевой (тазовой) кости, кости предплечья (голени) и кости лапы (стопы). Стопа, в свою очередь, состоит из трех костных звеньев.

Число зубов у многих домашних животных тяготеет к числам Фибоначчи: у кролика 14 пар, у собаки, свиньи, лошади - 21 ± 1 пара зубов. У диких животных число зубов изменяется более широко: у одного сумчатого хищника оно равно 54, у гиены - 34, у одного из видов дельфинов достигает 233. Общее число костей в скелете домашних животных (с учетом зубов) у одной группы близко к 230, а у другой - к 300. Следует учесть, что в число костей скелета не включены маленькие слуховые косточки и непостоянные косточки. С их учетом общее число костей скелета у многих животных станет близким к 233, а у других - превысит 300. Как видим, членение тела, сопровождавшееся развитием скелета, характеризуется дискретным изменением числа костей в различных органах животных, и эти числа отвечают числам Фибоначчи или очень близки к ним, образуя ряд 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. Отношение размеров у большинства куриных яиц равно 4:3 (у некоторых 3/2), семечек тыквы - 3:2, арбузных семечек - 3/2. Отношение длины сосновых шишек к их диаметру оказалось равным 2:1. Размеры березовых листьев в среднем очень близки к, а желудей - 5:2.

Считается, что если необходимо разбить на две части цветочный газон (трава и цветы), то не следует делать эти полосы равными по ширине, красивее будет, если взять их в отношении 5: 8 или 8: 13, т.е. воспользоваться такой пропорцией, которые называется «золотым сечением».

Числа Фибоначчи и фотография

Применительно к фотографическому искусству правило золотого сечения делит кадр двумя горизонтальными и двумя вертикальными линиями на 9 неравных прямоугольников. Чтобы облегчить себе задачу съемки сбалансированных изображений, фотографы немного упростили задачу и стали делить кадр на 9 равных прямоугольников в соответствии с числами Фибоначчи. Так правило золотого сечения трансформировалось в правило третей, которое относится к одному из принципов построения композиции.

Фот. 24. Кадр и золотое сечение

В видоискателях современных цифровых камер точки фокусировки расположены на позициях 2/8 или на воображаемых линиях, делящих кадр по правилу золотого сечения.

Фот.25. Цифровая фотокамера и точки фокусировки

Фот.26.

Фот.27. Фотография и точки фокусировки

Правило третей применимо ко всем сюжетным композициям: снимаете вы пейзаж или портрет, натюрморт или репортаж. Пока ваше чувство гармонии не стало приобретенным и бессознательным, соблюдение нехитрого правила третей позволит вам делать снимки выразительные, гармоничные, сбалансированные.

Фот.28. Фотография и отношение неба и земли 1 к 2.

Наиболее удачным примером для демонстрации является пейзаж. Принцип композиции заключается в том, что небо и суша (либо водная гладь) должны иметь соотношение 1:2. Одну треть кадра следует отвести под небо, а две трети под сушу или наоборот.

Фот.29. Фотография цветка закручивается по спирали

Фибоначчи и космос

Соотношение воды и суши на планете Земля составляет 62% и 38%.

Размеры Земли и Луны находятся в золотой пропорции.

Фот.30. Размеры Земли и Луны

На рисунке показаны относительные размеры Земли и Луны в масштабе.

Нарисуем радиус Земли. Проведем отрезок от центральной точки Земли до центральной точки Луны, длина которого будет равна). Нарисуем отрезок для соединения двух данных отрезков, чтобы сформировать треугольник. Получаем золотой треугольник.

Сатурн показывает золотую пропорцию в нескольких ее измерениях

Фот.31. Сатурн и его кольца

Диаметр Сатурна очень близко находится в отношении золотой пропорции с диаметром колец, как показано зелеными линиями. Радиус в нутренней части колец находится в отношении, очень близком к с внешним диаметром колец, как показано синей линией.

Расстояние планет от Солнца также подчиняется золотой пропорции.

Фот.32. Расстояние планет от Солнца

Золотое сечение в быту

Золотое сечение также используется, чтобы придать стиль и привлекательность в области маркетинга и дизайна повседневных потребительских товаров. Примеров множество, но проиллюстрируем лишь некоторые.

Фот.33. Эмблема Toyota

Фот.34. Золотое сечение и одежда

Фот.34. Золотое сечение и автомобильный дизайн

Фот.35. Эмблема Apple

Фот.36. Эмблема Google

Практические исследования

Теперь применим полученные знания на практике. Проведем сначала измерения среди учащихся 8 класса.

В эксперименте приняли участие 7 учащихся 8 класса, 5 девочек и 2 мальчика. Измерялся рост и расстояние от пупка до пола. Результаты отражены в таблицы. Одна учащаяся идеального телосложения, для неё отношение роста к расстоянию от пупка до пола равно 1,6185. Ещё одна учащаяся очень близка к золотому сечению, . В результате проведенных измерений 29% участников имеют идеальные параметры. Эти результаты в процентах тоже близки к золотому сечению 68% и 32%. Для первой испытуемой мы видим, что 3 отношения из 5 близки к золотому сечению, в процентном соотношении это 60% к 40%. А для второй – 4 из 5, то есть 80% к 20%.

Если внимательно посмотреть на телевизионную картинку, то ее размеры будут 16 к 9 или 16 к 10, что тоже близко к золотому сечению.

Проводя измерения и построения в CorelDRAW X4 и используя кадр новостного канала Россия 24, можно обнаружить следующее:

а) отношение длины к ширине кадра равно 1,7.

б) человек в кадре расположен ровно в точках фокусировки, расположенных на расстоянии 3/8.

Далее обратимся к официальному микроблогу газеты «Известия», другими словами, к твиттер-страничке. Для экрана монитора со сторонами 4:3видим, что «шапка» странички составляет 3/8 от всей высоты странички.

Внимательно посмотрев на фуражки военных, можно обнаружить следующее:

а) фуражка министра обороны РФ имеет отношение указанных частей 21,73 к 15,52, равное 1,4.

б) фуражка пограничника РБ имеет размеры указанных частей 44,42 к 21,33 , что равно 2,1.

в) фуражка времен СССР имеет размеры указанных частей 49,67 к 31,04, что равно 1,6.

Для данной модели подойдет длина платья 113,13 мм.

Если «дорисовать» платье до «идеальной» длины, то получим вот такую картинку.

Все измерения имеют некоторую погрешность, так как проводились по фотографии, что не мешает увидеть тенденцию – всё, что идеально, содержит золотое сечение в той или иной степени.

Заключение

Мир живой природы предстает перед нами совсем иным - подвижным, изменчивым и удивительно разнообразным. Жизнь демонстрирует нам фантастический карнавал разнообразия и неповторимости творческих комбинаций! Мир неживой природы - это прежде всего мир симметрии, придающий его творениям устойчивость и красоту. Мир природы - это прежде всего мир гармонии, в которой действует "закон золотого сечения".

Золотое сечение” представляется тем моментом истины, без выполнения которого не возможно, вообще, что-либо сущее. Что бы мы ни взяли элементом исследования, “золотое сечение” будет везде; если даже нет видимого его соблюдения, то оно обязательно имеет место на энергетическом, молекулярном или клеточном уровнях.

Воистину природа оказывается однообразной (и потому единой!) в проявлении своих фундаментальных закономерностей. Найденные ею «наиболее удачные» решения распространяются на самые различные объекты, на самые разнообразные формы организации. Непрерывность и дискретность организации исходит из двуединства материи - ее корпускулярной и волновой природы, проникает в химию, где дает законы целочисленной стехиометрии, химические соединения постоянного и переменного состава. В ботанике непрерывность и дискретность находят свое специфическое выражение в филлотаксисе, квантах дискретности, квантах роста, единстве дискретности и непрерывности пространственно-временной организации. И вот уже в числовых соотношениях органов растений появляется «принцип кратных отношений», введенный А. Гурским, - полное повторение основного закона химии.

Конечно, заявление, что все эти явления построены на последовательности Фибоначчи, звучит слишком громко, но тенденция на лицо. Да и к тому же сама она далека от совершенства, как и всё в этом мире.

Есть предположение, что ряд Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотосечённой логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любого ряда достаточно знать три его члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности является степенью Золотой Пропорции (). Часть ряда выглядит примерно так: ... ; ; ; ; ; ; ; ; ; ; ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим =1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
Откуда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...

Список используемых источников

    Васютинский, Н. Золотая пропорция/ Васютинский Н, Москва, Молодая гвардия, 1990, - 238 с. - (Эврика).

    Воробьев, Н.Н. Числа Фибоначчи,

    Режим доступа: . Дата доступа: 17. 11. 2015.

    Режим доступа: . Дата доступа: 16. 11. 2015.

    Режим доступа: . Дата доступа: 13. 11. 2015.

(числа Фибоначчи, англ. Fibonacci sequence, Fibonacci numbers) – ряд чисел, выведенный известным математиком Фибоначчи. Имеет следующий вид: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181 и др.

История ряда Фибоначчи

Леонардо из Пизы (Фибоначчи) пришел в математику из-за практической потребности в установлении деловых контактов. В молодости Фибоначчи много путешествовал, сопровождал отца в разных деловых поездках, что позволяло ему общаться с местными учеными.

Ряд чисел, который сегодня носит его имя, был выведен благодаря проблеме с кроликами, которую автор изложил в книге под названием «Liber abacci» (1202 год): один человек посадил в загон, со всех сторон окруженный стеной, пару кроликов. Вопрос: сколько пар кроликов может произвести эта пара за год, если известно, что ежемесячно, начиная со второго месяца, каждая пара производит на свет еще одну пару кроликов.

В итоге Фибоначчи определил, что число пар кроликов в каждый из последующих двенадцати месяцев будет соответственно:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Где каждое последующее число - это сумма двух предыдущих. Это ряд (числа) Фибоначчи. Данная последовательность имеет множество свойств, интересных с математической точки зрения. Например, если разделить линию на 2 сегмента таким образом, чтобы соотношение между меньшим и большим сегментом было пропорционально соотношению между большим сегментом и всей линией, получится коэффициент пропорциональности, известный как «золотое сечение». Он приблизительно равен 0,618. Ученые эпохи Возрождения считали, что именно эта пропорция, если ее соблюдать в архитектурных сооружениях, способна больше всего радовать глаз.

Применение ряда Фибоначчи

Ряд Фибоначчи нашел широкое применение в самых разных областях науки и жизни. Например, в природе: в строении ураганов, раковин и даже галактик. Не стал исключением и валютный рынок Форекс, где последовательный ряд чисел стал использоваться для прогнозирования трендов. Следует отметить, что между этими числами есть неизменные отношения. Например, как упоминалось выше, отношение предыдущего числа к следующему асимптотически стремится к 0,618 (золотое сечение). Отношения некоторого числа к предыдущему также стремится к величине 0,618.

Помимо прогнозирования трендов, числа Фибоначчи на Форекс используются для прогноза направления движения цены. Например, разворот тренда по золотому сечению происходит на уровне около 61,8% от предыдущего изменения цены (см. рис. 1). Соответственно, самым выгодным вариантом в таком случае будет закрытие позиции чуть ниже данного уровня. Опираясь на ряд Фибоначчи можно рассчитывать наиболее выгодные моменты закрытия и открытия сделок.

Также, одним из способов применения последовательных чисел ряда Фибоначчи на рынке Форекс является построение дуг. Выбор центра для такой дуги происходит в точке важного дна или потолка. Радиус дуг рассчитывается при помощи умножения коэффициентов Фибоначчи на значение предыдущего существенного подъема или спада цен.

Выбираемые коэффициенты имеют значения 0.333, 0.382, 0.4, 0.5, 0.6, 0.618, 0.666. Расположение дуг определяет их роль: поддержки или сопротивления. Чтобы получить представление также о времени возникновения движений цены, дуги, как правило, используют совместно со скоростными или веерными линиями.

Принцип их построения аналогичен: нужно выбрать точки прошлых экстремумов и построить горизонтальную линию из вершины первого из них и вертикальную – из вершины второго. Затем следует поделить получившийся вертикальный отрезок на соответствующие коэффициентам части, нарисовать лучи, идущие из первой точки сквозь только что избранные. При использовании отношений 2/3 и 1/3 получаются скоростные линии, при более строгих 0,618, 0,5 и 0,382 – веерные линии. Все они служат линиями поддержки или сопротивления для ценового тренда (см. рис. 2).

Пересечения веерных дуг и линий служат сигналами для определения поворотных точек тренда – как по времени, так и по цене.

(Рис. 2 – Ряд Фибоначчи, построение дуг)

Более волатильные пары валют характеризуются достижением больших уровней Фибоначчи по сравнению с менее волатильными. Максимальные движения фиксируются по парам Доллар/Франк и Фунт/Доллар, затем идут Доллар/Йена и Евро/Доллар.

Использование ряда Фибоначчи на валютном рынке Форекс имеет одну особенность – их можно применять лишь для хороших импульсных движений.



Похожие статьи
 
Категории