1 мегабайт в секунду сколько мегабит. Бит в секунду

14.10.2019

Сегодня интернет нужен в каждом доме не меньше чем вода или свет. И в каждом городе есть масса компаний или небольших фирм, которые могут предоставить людям доступ к интернету.

Пользователь может выбрать любой пакет для пользования интернетом от максимального 100 Мбит/с до небольшой скорости например 512 кбайт/с. Как же выбрать для себя подходящую скорость и правильного провайдера интернета?

Конечно же скорость интернета нужно выбирать исходя из того, что вы делаете в сети и как много вы готовы отдать в месяц за доступ в интернет. По своему опыту хочу сказать, что скорость 15 Мбит/с вполне устраивает меня как человека, который работает в сети. Работая в интернете, у меня включено 2 браузера, и в каждом открыто по 20-30 вкладок, при этом проблемы возникают больше со стороны компьютера (для работы с большим количеством вкладок нужно много оперативной памяти и мощный процессор) нежели со стороны скорости интернета. Единственный момент когда приходится немного подождать - это момент первого запуска браузера, когда подгружаются одновременно все вкладки, но обычно это занимает не более минуты.

1. Что обозначают значения скорости интернета

Многие пользователи путают значения скорости интернета думая что 15Мб/с - это 15 мегабайт в секунду. На самом деле 15Мб/с - это 15 мегабит в секунду, а это в 8 раз меньше мегабайтов и на выходе мы получим около 2 мегабайт скорость загрузки файлов и страниц. Если вы обычно скачиваете фильмы для просмотра размером 1500 Мб, то со скоростью 15 Мбит/с фильм будет загружаться 12-13 минут.

Смотрим много или мало вашей скорости интернета

  • Скорость равна 512 кбит/с 512 / 8 = 64 кБ/с (этой скорости мало для просмотра онлайн видео);
  • Скорость равна 4 Мбит/с 4 / 8 = 0,5 МБ/с или 512 кБ/с (этой скорости достаточно для просмотра онлайн видео в качестве до 480р);
  • Скорость равна 6 Мбит/с 6 / 8 = 0,75 МБ/с (этой скорости достаточно для просмотра онлайн видео в качестве до 720р);
  • Скорость равна 16 Мбит/с 16 / 8 = 2 МБ/с (этой скорости достаточно для просмотра онлайн видео в качестве вплоть до 2К);
  • Скорость равна 30 Мбит/с 30 / 8 = 3,75 МБ/с (этой скорости достаточно для просмотра онлайн видео в качестве вплоть до 4К);
  • Скорость равна 60 Мбит/с 60 / 8 = 7,5 МБ/с (этой скорости достаточно для просмотра онлайн видео в любом качестве);
  • Скорость равна 70 Мбит/с 60 / 8 = 8,75 МБ/с (этой скорости достаточно для просмотра онлайн видео в любом качестве);
  • Скорость равна 100 Мбит/с 100 / 8 = 12,5 МБ/с (этой скорости достаточно для просмотра онлайн видео в любом качестве).

Многие подключая интернет переживают о возможности просмотра онлайн видео, посмотрим какой нужен трафик фильмам с различным качеством.

2. Скорость интернета необходимая для просмотра онлайн-видео

А здесь вы узнаете много или мало вашей скорости для просмотра онлайн видео с разными форматами качества.

Тип трансляции Битрейт видео Битрейт аудио (стерео) Трафик Мб/с (мегабайт в сек.)
Ultra HD 4K 25-40 Мбит/c 384 кбит/с от 2,6
1440p (2К) 10 Мбит/c 384 кбит/с 1,2935
1080p 8000 кбит/с 384 кбит/с 1,0435
720p 5000 кбит/с 384 кбит/с 0,6685
480p 2500 кбит/с 128 кбит/с 0,3285
360p 1000 кбит/с 128 кбит/с 0,141

Мы видим что все самые популярные форматы без проблем воспроизводятся скоростью интернета в 15 Мбит/с. А вот для просмотра видео в формате 2160p (4К) нужно уже не менее 50-60 Мбит/с. но есть одно НО. Не думаю что многие серверы смогут раздавать видео такого качества поддерживая такую скорость, так что подключив интернет в 100 Мбит/с можно так и не посмотреть онлайн видео в 4К.

3. Скорость интернета для онлайн игр

Подключая домашний интернет, каждый геймер хочет быть уверен на 100% в том, что его скорости интернета будет достаточно для того, чтобы играть в свою любимую игру. Но как оказывается, онлайн-игры совсем не требовательны к скорости интернета. Рассмотрим какую же скорость требуют популярные онлайн игры:

  1. DOTA 2 - 512 кбит/сек.
  2. World of Warcraft - 512 кбит/сек.
  3. GTA online - 512 кбит/сек.
  4. World of Tanks (WoT) - 256-512 кбит/сек.
  5. Panzar - 512 кбит/сек.
  6. Counter Strike - 256-512 кбит/сек.

Важно! На качество работы вашей игры онлайн больше зависит не скорость интернета, а качество самого канала. Например если вы (или ваш провайдер) получаете интернет через спутник, то каким бы пакетом вы не пользовались пинг в игре будет значительно больше, нежели у проводного канала с меньшей скоростью.

4. Для чего нужен интернет более 30 Мбит/сек.

В исключительных случаях я мог бы порекомендовать использовать более быструю связь 50 Мбит/с и более. Не многие смогут обеспечить такую скорость в полном объеме, компания «Интернет в дом» не первый год на этом рынке и вполне вселяет доверие, тем более немаловажным является стабильность связи, и хочется верить что тут они на высоте. Большая скорость интернет соединения может быть необходима при работе с большими объемами данных (загрузка и выгрузка их из сети). Возможно вы любитель просматривать фильмы в замечательном качестве, либо ежедневно скачиваете большие по объему игры, либо загружаете в интернет видео или рабочие файлы больших объемов. Для проверки скорости связи можно использовать различные онлайн сервисы, а для оптимизации работы нужно выполнить .

Кстати, скорость 3 Мбита/с и ниже, обычно делает работу в сети немного неприятной, не все сайты с онлайн видео работают хорошо, да и загрузка файлов вообще не радует.

Как бы там ни было сегодня на рынке интернет услуг есть из чего выбрать. Иногда, кроме глобальных провайдеров, интернет предлагают местечковые фирмочки, и частенько уровень их сервиса оказывается тоже на высоте. Стоимость услуг в таких фирмах конечно значительно ниже нежели у крупных компаний, но как правило покрытие у таких фирм совсем незначительное, обычно в рамках района или двух.

В эпоху оптоволокна и накопителей объемом в десятки терабайт считать в битах не принято. Мы бы совсем забыли, чем отличается Кбит от Мбит, если бы не расхождения между обещаниями провайдеров и скоростью передачи данных в сетях, которая как раз и исчисляется преимущественно в этих единицах. Чтобы не растеряться при виде загадочных аббревиатур, надо знать:

  • 1 бит – это не то же самое, что 1 байт (и даже с приставками кило- и мега-);
  • в битах измеряют количество переданной информации, в байтах – объем хранимой;
  • 1 байт (1 Б) = 8 бит (соответственно, 1 килобайт (Кб) = 8 килобит (Кбит) и т. д.).

Итак, и Кбит, и Мбит – это кратные биту единицы измерения количества информации, используемые сегодня преимущественно в контексте обсуждения скорости передачи данных в телекоммуникационных и компьютерных сетях.

Сравнение

Как известно на примере километров и мегабайтов, в СИ применяются десятичные приставки для обозначения умножения единиц на степени 10. Кило – 10³ (х 1000), мега – 10⁶ (х 1000000). Значит, основное отличие килобит от мегабит состоит в кратности биту:

1 Кбит = 1000 бит,

1 Мбит = 1000000 бит.

В то же время иногда килобитами и мегабитами называют и другие единицы – кибибиты (Кибит) и мебибиты (Мибит). Путаница возникла из-за принятия МЭК двоичной системы именования приставок, в которой единицы умножаются на степени 2. Получается, что

1 Кбит = 2¹º бит = 1024 бит,

1 Мбит = 2²º бит = 1048576 бит.

Вне зависимости от контекста измерения сразу видно, в чем разница между Кбит и Мбит: они соотносятся как меньшее к большему. Оперируют чаще двоичными битами, но иногда измеряют скорость и разрядность в двоичной системе, оставляя обозначение десятичным – так удобнее пользователям.

Поскольку все больше и больше наших ежедневных развлечений связаны с Интернетом, то его скорость стала очень важным фактором. В мире, где люди могут легально скачивать фильмы и просматривать телевизионные шоу со своих ПК, пользователи не хотят долго сидеть и ждать. Из-за этого, покупая новый широкополосный пакет, пользователи стремятся узнать, насколько быстро будет установлено соединение. К сожалению, есть небольшая головоломка, которая состоит в проблеме распознавания между мегабитами и мегабайтами .

Мегабиты и Мегабайты

Предположим, вы заинтересованы в получении нового интернет-сервиса.
Вы смотрите на скорости, предлагаемые в пакете, который рекламирует «до 50Мб/с». Если вы приобретете этот пакет, как вы думаете, какой будет ваша скорость загрузки ?

Легко предположить, что «Мб/с» означает «мегабайты в секунду» и что, если вы подключите этот пакет, то сможете загружать файлы со скоростью 50 Мб в секунду. Однако внимательно изучите приведенное объявление.

Нижняя буква «б» в этом примере очень важна, поскольку показывает, что речь идет не о 50 мегабайтах в секунду. Эта скорость Интернета, фактически рекламируется со скоростью 50 мегабит в секунду, что сильно отличается!

«Реальная» скорость

Итак, если мы не собираемся загружать со скоростью 50 мегабайт в секунду, что принесет вам 50Мб/с? Чтобы ответить на этот вопрос, нам нужно посмотреть на мегабиты и мегабайты. Чтобы сделать это, нам проще убрать «мега» в обеих словах и сравнить разницу между битом и байтом. Байт состоит из 8 бит, поэтому мы можем сказать, что байт в 8 раз больше, чем бит, или математически, 1 байт = 8 бит.

Если мы используем эту информацию в наших мегабитах и ​​мегабайтах, то мы можем видеть, что мегабайт в 8 раз больше мегабита, или 1 мегабайт = 8 мегабитам.

Теперь, когда мы это знаем, мы можем определить, скорость в мегабайтах, при 50 мегабит в секунду.

Учитывая, что в байте есть 8 бит, мы можем принять значение 50 Мбит / с и разделить его на восемь. Это дает нам 6.25, что означает, что мы будем загружать со скоростью 6,25 мегабайта в секунду. Это намного медленнее, чем мы предполагали!

Вот почему так важно понимать разницу между мегабитами и мегабайтами .

То, что похоже на отличную сделку, вдруг становится в восемь раз хуже, после подписания договора. Если вы хотите знать, использует компания мегабиты или мегабайты, это легко сделать. Просто помните, что в мегабитах используется маленькая буква «б» (Мб / с), а в мегабайтах — «Б» (МБ/с).

Зачем использовать биты? Почему не байты?

Почему мы, в первую очередь, используем биты? Не было бы ли намного проще, если бы компании просто рекламировали свои скорости в мегабайтах и не вводили бы в заблуждения?

С точки зрения маркетинга, выгоднее завлекать клиентов, использую мегабиты (50 Мб / с выглядит более впечатляюще, чем 6,25 МБ / с). Однако наиболее разумным объяснением является то, что скорость передачи данных в сети всегда измеряется: байты обычно используются, когда мы вычисляем объем и размер (жесткий диск 500 ГБ, файл 10 Мбайт), а биты используются, когда мы обсуждаем, насколько быстрым является соединение (50 Мб / с, Интернет).

Фактически, мы измеряли Интернет-скорость в битах, так как первые модемы были изобретены более полувека назад! Это было очевидно, в то время, люди не беспокоились о том, чтобы просматривать свои любимые телешоу на Netflix, а просто думали о скорости, с которой одно устройство соединялось с другим. Таким образом, когда интернет-провайдер сообщает вам скорость в Мб / с, он может просто использовать стандарт, который остался с момента изобретения модемов.

Почему не гарантируют скорость

Даже после всех этих вычислений и определения скорости загрузки, она может быть не идеальной. Если вы посмотрите внимательно, вы заметите, что поставщики услуг рекламируют свои подключения как «до». Это связано с множеством факторов: расстояние до провайдера; количество людей, пользующихся Интернетом в одно время; насколько хорошо провайдер поддерживает свои услуги. Короче говоря, это означает, что вы не всегда получаете скорость, за которую платите.

Для потоковой передачи фильмов в Интернете, например, в Netflix, могут помочь ваши знания о том, как повысить скорость работы в Интернете.

Небольшая подсказка

При поиске нового интернет-сервиса может быть трудно определить, что, на самом деле, продают вам интернет-провайдеры. С первого взгляда сбивает с толку, вопрос о мегабитах и ​​мегабайтах, в котором легко разобраться. Только помните, что 1 мегабайт равен 8 мегабитам, и вы больше не будете задумываться о скорости Интернета.

Термины, обозначающие скорость Интернета, крайне сложно понять человеку, который от этой темы далек. Например, предлагает провайдер услугу предоставления Интернета на скорости 1 мбит/сек, а вы и не знаете, много это или мало. Давайте разбираться, что это - mbps, и как вообще измеряется скорость интернет-соединения.

Расшифровка аббревиатуры

"mbps" (mbit per second ) - мегабит в секунду. Именно в этих единицах чаще всего и измеряется скорость соединения. Все провайдеры в своих рекламных объявлениях указывают скорость в мегабитах в секунду, поэтому и нам стоить разбираться именно с этими величинами.

Сколько это - 1 mbps?

Для начала отметим, что 1 бит является самой маленькой единицей для измерения объема информации. Наравне с битом, люди часто используют байт, забывая о том, что эти два понятия совершенно разные. Иногда они говорят "байт", имея в виду "бит", и наоборот. Поэтому стоит рассмотреть этот вопрос детальнее.

Итак, 1 бит - наименьшая единица измерения. 8 бит равно одному байту, 16 бит - двум байтам и т. д. То есть нужно просто запомнить, что байт всегда в 8 раз больше бита.

Учитывая, что обе единицы очень маленькие, для них в большинстве случаев используют приставки "мега", "кило" и "гига". Что эти приставки означают, вам должно быть известно из школьного курса. Но если вы забыли, то стоит напомнить:

  1. "Кило" - умножение на 1 000. 1 килобит равен 1 000 битам, 1 килобайт равен 1024 байтам.
  2. "Мега" - умножение на 1 000 000. 1 мегабит равен 1 000 килобитам (или 1 000 000 битам), 1 мегабайт равен 1024 килобайтам.
  3. "Гига" - умножение на 1 000 000 000. равен 1 000 мегабитам (или 1 000 000 000 битам), 1 гигабайт равен 1024 мегабайтам.

Если говорить простыми словами, то скорость подключения - это скорость отправляемой и получаемой информации компьютером в одну единицу времени (в секунду). Если указана скорость вашего интернет-соединения 1 mbps, что это значит? В данном случае это говорит о том, что скорость вашего Интернета составляет 1 мегабит в секунду или 1 000 килобит/секунду.

Насколько это много

Многие пользователи полагают, что mbps - это много. На самом деле это не так. Современные сети настолько развиты, что с учетом их возможностей, 1 mbps - это вообще ничто. Приведем расчет такой скорости на примере скачивания файлов из Интернета.

Учитываем, что mbps - это мегабиты в секунду. Поделим значение 1 на 8 и получим мегабайты. Итого 1/8=0,125 мегабайт/секунду. Если мы захотим скачать из Интернета музыку, то при условии, что один трек "весит" 3 мегабайта (обычно треки столько и "весят"), мы сможем его скачать за 24 секунды. Посчитать несложно: 3 мебагайта (вес одного трека) нужно поделить на 0,125 мегабайт/секунду (наша скорость). Результат - 24 секунды.

Но это касается только обычной песни. А если вы хотите загрузить какой-нибудь фильм, величиной в 1,5 Гб? Давайте считать:

  • 1500 (мегабайт) : 0,125 (мегабайт в секунду) = 12 000 (секунд) .

Переводим секунды в минуты:

  • 12 000: 60 = 200 минут или 3,33 часа .

Таким образом, при скорости Интернета 1 mbps мы сможем скачать фильм, объемом 1,5 Гб за 3,33 часа. Здесь уже сами судите, долго это или нет.

Учитывая тот факт, что в крупных городах интернет-провайдеры предлагают скорость интернета до 100 mbps, мы бы смогли загрузить фильм с таким же объемом всего за 2 минуты, а не за 200. То есть в 100 раз быстрее. Если отталкиваться от этого, то можно прийти к выводу, что mbps - это низкая скорость.

Впрочем, все относительно. В какой-нибудь глухой деревне, где вообще сложно поймать даже GSM-сеть, иметь Интернет с такой скоростью - это круто. Однако в большом мегаполисе с огромной конкуренцией между провайдерами и мобильными операторами такого слабого интернет-соединения быть не может.

Заключение

Теперь вы знаете, как определять скорость Интернета, и немного сможете разбираться данных единицах измерения. Конечно, запутаться в них - раз плюнуть, но главное запомнить, что бит - это восьмая часть байта. А приставки "кило", "мега" и "гига" лишь прибавляют три, шесть или девять нулей, соответственно. Если это понимать, то все становится на свои места.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 мегабит в секунду (метрический) [Мб/с] = 0,00643004115226337 Оптическая несущая 3

Исходная величина

Преобразованная величина

бит в секунду байт в секунду килобит в секунду (метрический) килобайт в секунду (метрический) кибибит в секунду кибибайт в секунду мегабит в секунду (метрический) мегабайт в секунду (метрический) мебибит в секунду мебибайт в секунду гигабит в секунду (метрический) гигабайт в секунду (метрический) гибибит в секунду гибибайт в секунду терабит в секунду (метрический) терабайт в секунду (метрический) тебибит в секунду тебибайт в секунду Ethernet 10BASE-T Ethernet 100BASE-TX (быстрый) Ethernet 1000BASE-T (гигабит) Оптическая несущая 1 Оптическая несущая 3 Оптическая несущая 12 Оптическая несущая 24 Оптическая несущая 48 Оптическая несущая 192 Оптическая несущая 768 ISDN (одиночный канал) ISDN (двойной канал) модем (110) модем (300) модем (1200) модем (2400) модем (9600) модем (14.4k) модем (28.8k) модем (33.6k) модем (56k) SCSI (асинхронный режим) SCSI (синхронный режим) SCSI (Fast) SCSI (Fast Ultra) SCSI (Fast Wide) SCSI (Fast Ultra Wide) SCSI (Ultra-2) SCSI (Ultra-3) SCSI (LVD Ultra80) SCSI (LVD Ultra160) IDE (PIO mode 0) ATA-1 (PIO mode 1) ATA-1 (PIO mode 2) ATA-2 (PIO mode 3) ATA-2 (PIO mode 4) ATA/ATAPI-4 (DMA mode 0) ATA/ATAPI-4 (DMA mode 1) ATA/ATAPI-4 (DMA mode 2) ATA/ATAPI-4 (UDMA mode 0) ATA/ATAPI-4 (UDMA mode 1) ATA/ATAPI-4 (UDMA mode 2) ATA/ATAPI-5 (UDMA mode 3) ATA/ATAPI-5 (UDMA mode 4) ATA/ATAPI-4 (UDMA-33) ATA/ATAPI-5 (UDMA-66) USB 1.X FireWire 400 (IEEE 1394-1995) T0 (полный сигнал) T0 (B8ZS полный сигнал) T1 (полезный сигнал) T1 (полный сигнал) T1Z (полный сигнал) T1C (полезный сигнал) T1C (полный сигнал) T2 (полезный сигнал) T3 (полезный сигнал) T3 (полный сигнал) T3Z (полный сигнал) T4 (полезный сигнал) Virtual Tributary 1 (полезный сигнал) Virtual Tributary 1 (полный сигнал) Virtual Tributary 2 (полезный сигнал) Virtual Tributary 2 (полный сигнал) Virtual Tributary 6 (полезный сигнал) Virtual Tributary 6 (полный сигнал) STS1 (полезный сигнал) STS1 (полный сигнал) STS3 (полезный сигнал) STS3 (полный сигнал) STS3c (полезный сигнал) STS3c (полный сигнал) STS12 (полезный сигнал) STS24 (полезный сигнал) STS48 (полезный сигнал) STS192 (полезный сигнал) STM-1 (полезный сигнал) STM-4 (полезный сигнал) STM-16 (полезный сигнал) STM-64 (полезный сигнал) USB 2.X USB 3.0 USB 3.1 FireWire 800 (IEEE 1394b-2002) FireWire S1600 and S3200 (IEEE 1394-2008)

Избранная статья

Подробнее о передаче данных и теореме Котельникова

Общие сведения

Современные устройства, которые записывают и обрабатывают данные, например, компьютеры, в основном работают с данными в цифровом формате. Если сигнал - аналоговый, то для того, чтобы эти устройства могли с ним работать, его преобразуют в цифровой. Аналоговый сигнал - продолжительный и непрерывный, как звуковая волна, изображенная розовым цветом на иллюстрации.

Преобразование аналогового сигнала в цифровой происходит во время процесса дискретизации. При этом через каждый определенный промежуток времени производят измерение амплитуды сигнала, иными словами, берут дискретный отсчёт, и на основе полученной информации строят модель этого сигнала в цифровом формате. На иллюстрации оранжевым цветом показаны интервалы, на которых производили отсчёт.

Если эти интервалы достаточно малы, то можно довольно точно воссоздать аналоговый сигнал из цифрового. При этом воссозданный сигнал практически не отличается от исходного аналогового. Однако, чем больше отсчётов, тем больше места занимает цифровой файл, содержащий этот сигнал, что увеличивает размер памяти, необходимой для его хранения, и ширину полосы пропускания канала связи, необходимую для передачи этого файла.

При преобразовании сигнала из аналогового в цифровой теряется некоторая информация, но если эти потери малы, то мозг человека дополняет недостающую информацию. Это значит, что нет необходимости часто производить отсчёты сигнала - их можно совершать не чаще, чем необходимо, чтобы сигнал казался человеку непрерывным. Представить себе эти частоты отсчётов можно на примере стробоскопа. Когда он настроен на низкую частоту, например на 25 вспыхиваний в секунду (25 Гц), то нам заметно, что свет включается и выключается. Если же настроить стробоскоп на более высокую частоту, например на 72 вспыхиваний в секунду, то мигания будут незаметны, так как на такой частоте человеческий мозг заполняет пропуски в сигнале. Электронно-лучевые трубки, использовавшиеся в компьютерных мониторах, которые не так давно были заменены жидкокристаллическими дисплеями, обновляют изображение с определенной частотой, например 72 Гц. Если эту частоту понизить, например до 60 Гц или ниже, то экран начнет мигать. Это происходит по причине, описанной выше. Каждый пиксель при обновлении изображения кратковременно затемняется, по принципу, похожему на работу стробоскопа. В жидкокристаллических мониторах такого не происходит, поэтому они не мигают, даже при низкой частоте обновления изображения.

Дискретизация с недостаточным количеством отсчётов и искажение сигнала

Такое искажение называется алиасингом . Один из самых распространенных примеров такого искажения - муар . Его можно увидеть на изображениях поверхностей с повторяющимся рисунком, например на стенах, на волосах и на одежде.

В некоторых случаях из-за недостаточного количества отсчётов два разных аналоговых сигнала могут быть преобразованы в один и тот же цифровой сигнал. На верхнем рисунке синий аналоговый сигнал отличается от розового, но при преобразовании в цифровой, получается один и тот же сигнал, изображенный голубым цветом.

Эта проблема с обработкой сигнала искажает цифровой сигнал даже при достаточно высокой частоте дискретизации, которую обычно используют для звукозаписи. При записи звука высокочастотные сигналы, которые не слышны для человеческого уха, иногда преобразуют в цифровой сигнал более низкой частоты (на иллюстрации), который слышен людям. Это вызывает шумы и искажения звука. Один из способов избавиться от этой проблемы - фильтрация всех составляющих сигнала выше порога слышимости, то есть выше 22 кГц. В этом случае не происходит искажения сигнала.

Другое решение этой проблемы - увеличение частоты дискретизации. Чем выше эта частота, тем более плавным получается цифровой сигнал, как на иллюстрации. Здесь цифровой сигнал, полученный из аналогового сигнала на графике вверху, он изображен синим цветом. Этот цифровой сигнал почти идентичен с аналоговым сигналом, и перекрывает его, поэтому на этой иллюстрации розового сигнала совсем не видно.

Теорема Котельникова

Так как мы заинтересованы в том, чтобы файл с нашим цифровым сигналом был как можно меньшего размера, нам необходимо определить, насколько часто следует брать отсчёты, чтобы при этом не ухудшить качество сигнала. Для этих вычислений используют теорему Котельникова , также известную в английской литературе как теорема отсчётов или теорема Найквиста-Шеннона. Согласно этой теореме, частота, с которой взяты отсчёты, должна быть как минимум вдвое больше самой высокой частоты аналогового сигнала. Частота определяет, сколько полных колебаний происходит за определенное время. В нашем примере мы использовали единицы системы СИ, секунды, для времени и герцы (Гц) для частоты. Если известно время, за которое происходит одно колебание, то можно вычислить частоту, поделив 1 на это время. На иллюстрации, сигнал на верхнем графике, обозначенный розовым, завершает одно колебание за 6 секунд, значит его частота равна 1/6 Гц. Чтобы преобразовать этот сигнал в цифровой и не потерять качество, согласно теореме Котельникова необходимо брать отсчёты в два раза чаще, то есть с частотой 1/3 Гц, или каждые 3 секунды. На иллюстрации отсчёты взяты именно с такой чистотой - каждый отсчёт обозначен оранжевой точкой. На нижнем графике частота сигнала, изображенного зеленым цветом выше. Она достигает 1 Гц, так как одно колебание завершается за одну секунду. Для дискретизации этого сигнала необходимо брать отсчёты с частотой 2 Гц или каждую 1/2 секунды, что и продемонстрировано на иллюстрации.

История теоремы

Теорема отсчётов была выведена и доказана почти одновременно рядом независимых ученых по всему миру. В русском языке она известна как теорема Котельникова, но на других языках в ее название часто включают имена других ученых, например Найквиста и Шеннона в английском варианте. Список других ученых, внесших вклад в этой области, включают Д. М. Уиттекера и Г. Раабе.

Примеры выбора частоты отсчётов

Насколько часто брать отсчёты обычно решают, используя теорему Котельникова, но выбор максимальной частоты сигнала зависит от того, для чего будет использоваться цифровой сигнал. В некоторых случаях частота отсчётов больше, чем удвоенная частота сигнала. Обычно такая высокая частота необходима для улучшения качества цифрового сигнала. В других случаях, частоту ограничивают слышимым спектром, как, например, в случае с компакт дисками, частота отсчётов в которых равна 44 100 Гц. Такая частота позволяет передать звуки до самой высокой частоты, которую способно услышать ухо человека, то есть до 20 000 Гц. Удвоение этой частоты до 44 100 Гц позволяет осуществлять передачу сигнала без потери качества.

Следует заметить, что порог слышимости зависит от возраста. Так, например, дети и молодые люди слышат звуки с частотой до 18 000 Гц, но с возрастом этот порог опускается до 15 000 Гц и ниже. Производители используют эти знания для создания электронных устройств и программного обеспечения специально для молодых людей. Например, некоторые смартфоны можно настроить так, чтобы они звонили на частоте выше 15 000 Гц - такой звонок не слышен большинству взрослых. Аудиозапись также делают с учетом порога слышимости молодых людей и тех, у кого очень хороший слух. Именно поэтому к порогу слышимости большинства людей добавили дополнительные 50 Гц, умноженных на два для частоты отсчётов. То есть, ориентируются на 22 050 Гц, умноженных вдвое - отсюда и такая высокая частота отсчётов в 44 100 Гц. Частота отсчётов в аудио записи для видео, например используемая в фильмах или телепередачах еще выше, до 48 000 Гц.

Иногда, наоборот, интервал частот для звукозаписи сужают. Например, если бо́льшая часть звука - человеческий голос, то не обязательно воссоздавать цифровой сигнал с высоким качеством. Так, например, в передающих устройствах, таких как телефоны, частота отсчётов всего 8 000 Гц. Этого достаточно для передачи голоса, так как мало кто будет передавать по телефону записи симфонического оркестра.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.



Похожие статьи
 
Категории