Частицы с целым значением спина. Спин составных частиц

23.09.2019

В 1922 году немецкие физики О. Штерн и В. Герлах поставили опыты, целью которых было измерение магнитных моментов P m атомов различных химических элементов. Для химических элементов, образующих первую группу таблицы Менделеева и имеющих один валентный электрон, магнитный момент атома равен магнитному моменту валентного электрона, т.е. одного электрона.

Идея опыта заключалась в измерении силы, действующей на атом в сильно неоднородном магнитном поле. Неоднородность магнитного поля должна быть такова, чтобы она сказывалась на расстояниях порядка размера атома. Только при этом можно было получить силу, действующую на каждый атом в отдельности.

Схема опыта изображена на рис. 7.9. В колбе с вакуумом, 10 –5 мм рт. ст., нагревался серебряный шарик К , до температуры испарения.

Рис. 7.9 Рис. 7.10

Атомы серебра летели с тепловой скоростью около 100 м/с через щелевые диафрагмы В и, проходя резко неоднородное магнитное поле, попадали на фотопластинку А .

Если бы момент импульса атома (и его магнитный момент ) мог принимать произвольные ориентации в пространстве (т.е. в магнитном поле), то можно было ожидать непрерывного распределения попаданий атомов серебра на фотопластинку с большой плотностью попаданий в середине. Но на опыте были получены совершенно неожиданные результаты: на фотопластинке получились две резкие полосы – все атомы отклонялись в магнитном поле двояким образом, соответствующим лишь двум возможным ориентациям магнитного момента (рис. 7.10).

Этим доказывался квантовый характер магнитных моментов электронов . Количественный анализ показал, что проекция магнитного момента электрона равна магнетону Бора :

.

Таким образом, для атомов серебра Штерн и Герлах получили, что проекция магнитного момента атома (электрона) на направление магнитного поля численно равна магнетону Бора .

Напомним, что

.

Опыты Штерна и Герлаха не только подтвердили пространственное квантование моментов импульсов в магнитном поле, но и дали экспериментальное подтверждение тому, что магнитные моменты электронов тоже состоят из некоторого числа «элементарных моментов», т.е. имеют дискретную природу. Единицей измерения магнитных моментов электронов и атомов является магнетон Бора (ħ – единица измерения механического момента импульса).

Кроме того, в этих опытах было обнаружено новое явление. Валентный электрон в основном состоянии атома серебра имеет орбитальное квантовое число l = 0 (s - состояние). Но при l = 0 (проекция момента импульса на направление внешнего поля равна нулю). Возник вопрос, пространственное квантование какого момента импульса обнаружилось в этих опытах и проекция какого магнитного момента равна магнетону Бора.

В 1925 г. студенты Геттингенского университета Гаудсмит и Уленбек предположили существование собственного механического момента импульса у электрона (спина ) и, соответственно, собственного магнитного момента электрона P ms .

Введение понятия спина сразу объяснило ряд затруднений, имевшихся к тому времени в квантовой механике. И в первую очередь – результатов опытов Штерна и Герлаха.

Авторы дали такое толкование спина : электрон – вращающийся волчок . Но тогда следует, что «поверхность» волчка (электрона) должна вращаться с линейной скоростью, равной 300 с , где с – скорость света. От такого толкования спина пришлось отказаться.

В современном представлении – спин , как заряд и масса , есть свойство электрона .

П. Дирак впоследствии показал, что существование спина вытекает из решения релятивистского волнового уравнения Шредингера.

Из общих выводов квантовой механики следует, что спин должен быть квантован : , где s спиновое квантовое число .

Аналогично, проекция спина на ось z (L sz ) (ось z совпадает с направлением внешнего магнитного поля) должна быть квантована и вектор может иметь (2s + 1) различных ориентаций в магнитном поле.

Из опытов Штерна и Герлаха следует, что таких ориентаций всего две: , а значит s = 1/2, т.е. спиновое квантовое число имеет только одно значение.

Для атомов первой группы, валентный электрон которых находится в s - состоянии (l = 0), момент импульса атома равен спину валентного электрона . Поэтому обнаруженное для таких атомов пространственное квантование момента импульса в магнитном поле является доказательством наличия у спина лишь двух ориентаций во внешнем поле. (Опыты с электронами в p - состоянии подтвердили этот вывод, хотя картина получилась более сложной) (желтая линия натрия – дуплет из-за наличия спина).

Численное значение спина электрона :

По аналогии с пространственным квантованием орбитального момента проекция спина квантуется (аналогично, как , то и ). Проекция спина на направление внешнего магнитного поля, являясь квантовой величиной, определяется выражением.

СПИН продажи – это метод продаж, разработанный Нилом Рэкхемем и описанный им в одноименной книге. Метод СПИН стал одним из самых широко используемых . Применяя данный способ можно добиться очень высоких результатов личных продаж, Нил Рэкхем смог это доказать проведя масштабные исследования. И несмотря, на то что в последнее время многие начали считать что данный метод продаж становится не актуальным, почти все крупные компании используют при обучении продавцов именно технику продаж СПИН.

Что такое СПИН продажи

Если коротко СПИН (SPIN) продажи это способ подведения клиента к покупке путём задавания поочередно определенных вопросов, вы не презентуете товар в открытую, а скорее подталкиваете клиента самостоятельно прийти к решению совершить покупку. Метод СПИН лучше всего подходит для так называемых «длинных продаж», часто это и продажи дорогого или сложного товара. То есть SPIN нужно применять, когда клиенту не просто сделать выбор. Необходимость в данной методике продаж возникла прежде всего благодаря выросшей конкуренции и насыщении рынка. Клиент стал более разборчивым и опытным и это потребовало большей гибкости от продавцов.

Техника продаж СПИН разделяется на следующие блоки вопросов:

  • С итуационные вопросы (Situation)
  • П роблемные вопросы (Problem)
  • И звлекающие вопросы (Implication)
  • Н аправляющие вопросы (Need-payoff)

Сразу стоит отметить, что СПИН продажи достаточно трудозатраты. Дело в том чтобы применять данную технику на практику, нужно очень хорошо знать товар, иметь хороший опыт продаж этого товара, сама по себе такая продажа занимает много времени у продавца. Поэтому СПИН продажи не стоит использовать в массовом сегменте, например в , поскольку если цена покупки невелика, а спрос на товар и так большой, то нет смысла тратить кучу времени на долгое общение с клиентом, лучше потратить время на рекламу и .

СПИН продажи построены на том, что клиент при прямом предложении товара продавцом часто включает защитный механизм отрицания. Покупателям изрядно надоело, что им постоянно, что то продают и реагируют отрицательно уже на сам факт предложения. Хотя товар сам по себе может быть и нужен, просто в момент презентации клиент думает не о том, что товар ему необходим, а о том что зачем ему это предлагают? Применение техники продаж СПИН заставляет клиента принять самостоятельное решение о покупке, то есть клиент даже и не понимает, что его мнением управляют, задавая правильные вопросы.

Техника продаж СПИН

Техника продаж СПИН (SPIN) – это модель продаж, основанная не только на , сколько на их . Другими словами, для успешного применения данной техники продаж, продавец должен уметь задавать правильные вопросы. Для начала разберем отдельно каждую группу вопросов техники продаж СПИН:

Ситуационные вопросы

Этот вид вопросов нужен для полноценного и определения его первичных интересов. Цель ситуационных вопросов выяснить опыт использования клиентом продукта, который вы собираетесь продавать, его предпочтения, для каких целей будет использоваться. Как правило, требуется около 5 открытых вопросов и несколько уточняющих. По итогам этого блока вопросов вы должны раскрепостить клиента и настроить его на общение, именно поэтому стоит уделить внимание открытым вопросам, а так же использовать . Кроме того вы должны собрать всю необходимую информацию для постановки проблемных вопросов, для того чтобы эффективно определить ключевые потребности стоит использовать . Как правило, блок ситуативных вопросов самый долгий по времени. Когда вы получили необходимую информацию от клиента, нужно переходить к проблемным вопросам.

Проблемные вопросы

Задавая проблемные вопросы, вы должны обратить внимание клиента на проблеме. Важно на стадии ситуационных вопросов понять, что важно клиенту. К примеру, если клиент всё время про деньги, то логично будет задавать проблемные вопросы, касающиеся денег: «вас устраивает цена, которую вы платите сейчас?»

Если вы не определились с потребностями, и не знаете, какие проблемные вопросы нужно задавать. Нужно иметь ряд заготовленных, стандартных вопросов затрагивающие разные сложности, с которыми может столкнуться клиент. Ваша основная цель обозначить проблему и главное чтобы она была важна для клиента. Например: клиент может признать, что переплачивает за услуги компании, которой он пользуется сейчас, но его это не волнует, так как для него важно качество услуг, а не цена.

Извлекающие вопросы

Данный тип вопросов направлен на определение того насколько для него эта проблема важна, и что будет если её не решить сейчас. Извлекающие вопросы – должны дать понять клиенту что, решая сложившуюся проблему, он получит пользу.

Сложность извлекающих вопросов заключается в том, что их не продумать заранее, в отличие от остальных. Конечно, с опытом у вас сформируется пул таких вопросов, и вы научитесь их использовать в зависимости от ситуации. Но вот изначально, многие продавцы, осваивающие СПИН продажи, испытывают сложности с задаванием таких вопросов.

Суть извлекающих вопросов сводится к тому, чтобы установить для клиента причин следственную связь между проблемой и её решением. Еще раз хочется отметить, что в СПИН продажах, нельзя сказать клиенту: «наш продукт решит вашу проблему». Вы должны сформировать вопрос так чтобы в ответ клиент сам сказал, что ему поможет решить проблему.

Направляющие вопросы

Направляющие вопросы – должны вам помочь , на этом этапе клиент за вас должен проговорить все выгоды которые он получит от вашего продукта. Направляющие вопросы можно сравнить с позитивным способом завершения сделки, только не продавец суммирует все выгоды, которые получит клиент, а наоборот.

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантово-механического явления, не имеющего аналогии в классической механике, обменного взаимодействия .

Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике . Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами ; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы .

Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы .

Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином описываются однокомпонентной волновой функцией (скаляр), со спином 1 2 {\displaystyle {\frac {1}{2}}} описываются двухкомпонентной волновой функцией (спинор), со спином 1 {\displaystyle 1} описываются четырёхкомпонентной волновой функцией (вектор), со спином 2 {\displaystyle 2} описываются шестикомпонентной волновой функцией (тензор) .

Что такое спин - на примерах

Хотя термин «спин» относится только к квантовым свойствам частиц, свойства некоторых циклически действующих макроскопических систем тоже могут быть описаны неким числом, которое показывает, на сколько частей нужно разделить цикл вращения некоего элемента системы, чтобы она вернулась в состояние, неотличимое от начального.

Легко представить себе спин, равный 0 : это точка - она со всех сторон выглядит одинаково , как её ни крути.

Примером спина, равного 1 , может служить большинство обычных предметов без какой-либо симметрии: если такой предмет повернуть на 360 градусов , то этот предмет вернётся в своё первоначальное состояние. Для примера - можно положить ручку на стол, и после поворота на 360° ручка опять будет лежать так же, как и до поворота.

В качестве примера спина, равного 2 можно взять любой предмет с одной осью центральной симметрии: если его повернуть на 180 градусов, он будет неотличим от исходного положения, и получается за один полный оборот он становится неотличим от исходного положения 2 раза. Примером из жизни может служить обычный карандаш, только заточенный с двух сторон или не заточенный вообще - главное чтобы был без надписей и однотонный - и тогда после поворота на 180° он вернется в положение, не отличимое от исходного. Хокинг в качестве примера приводил обычную игральную карту типа короля или дамы

А вот с полуцелым спином, равным 1 / 2 немножко сложнее: это получается, что в исходное положение система возвращается после 2-х полных оборотов, то есть после поворота на 720 градусов. Примеры:

  • Если взять ленту Мёбиуса и представить, что по ней ползет муравей, тогда, сделав один оборот (пройдя 360 градусов), муравей окажется в той же точке, но с другой стороны листа, а чтобы вернуться в точку, откуда он начал, придётся пройти все 720 градусов .
  • четырехтактный двигатель внутреннего сгорания. При повороте коленчатого вала на 360 градусов поршень вернётся в исходное положение (например, верхнюю мёртвую точку), но распределительный вал вращается в 2 раза медленнее и совершит полный оборот при повороте коленчатого вала на 720 градусов. То есть при повороте коленчатого вала на 2 оборота двигатель внутреннего сгорания вернётся в то же состояние. В этом случае третьим измерением будет положение распределительного вала.

На подобных примерах можно проиллюстрировать сложение спинов:

  • Два заточенных только с одной стороны одинаковых карандаша («спин» каждого - 1), скреплённые боковыми сторонами друг с другом так, что острый конец одного будет рядом с тупым концом другого (↓). Такая система вернётся в неотличимое от начального состояния при повороте всего на 180 градусов, то есть «спин» системы стал равным двум.
  • Многоцилиндровый четырёхтактный двигатель внутреннего сгорания («спин» каждого из цилиндров которого равен 1/2). Если все цилиндры работают одинаково, то состояния, при которых поршень находится в начале такта рабочего хода в любом из цилиндров, будут неотличимы. Следовательно, двухцилиндровый двигатель будет возвращаться в состояние, неотличимое от исходного, через каждые 360 градусов (суммарный «спин» - 1), четырёхцилиндровый - через 180 градусов («спин» - 2), восьмицилиндровый - через 90 градусов («спин» - 4).

Свойства спина

Любая частица может обладать двумя видами углового момента : орбитальным угловым моментом и спином.

В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики . Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина s → ^ , {\displaystyle {\hat {\vec {s}}},} алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента ℓ → ^ . {\displaystyle {\hat {\vec {\ell }}}.} Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

Спин испытывает квантовые флуктуации. В результате квантовых флуктуаций строго определённое значение может иметь только одна компонента спина, например . При этом компоненты J x , J y {\displaystyle J_{x},J_{y}} флуктуируют вокруг среднего значения. Максимально возможное значение компоненты J z {\displaystyle J_{z}} равно J {\displaystyle J} . В то же время квадрат J 2 {\displaystyle J^{2}} всего вектора спина равен J (J + 1) {\displaystyle J(J+1)} . Таким образом J x 2 + J y 2 = J 2 − J z 2 ⩾ J {\displaystyle J_{x}^{2}+J_{y}^{2}=J^{2}-J_{z}^{2}\geqslant J} . При J = 1 2 {\displaystyle J={\frac {1}{2}}} среднеквадратические значения всех компонент из-за флуктуаций равны J x 2 ^ = J y 2 ^ = J z 2 ^ = 1 4 {\displaystyle {\widehat {J_{x}^{2}}}={\widehat {J_{y}^{2}}}={\widehat {J_{z}^{2}}}={\frac {1}{4}}} .

Вектор спина меняет своё направление при преобразовании Лоренца . Ось этого поворота перпендикулярна импульсу частицы и относительной скорости систем отсчёта .

Примеры

Ниже указаны спины некоторых микрочастиц.

спин общее название частиц примеры
0 скалярные частицы π -мезоны , K-мезоны , хиггсовский бозон , атомы и ядра 4 He , чётно-чётные ядра, парапозитроний
1/2 спинорные частицы электрон , кварки , мюон , тау-лептон , нейтрино , протон , нейтрон , атомы и ядра 3 He
1 векторные частицы фотон , глюон , W- и Z-бозоны , векторные мезоны , ортопозитроний
3/2 спин-векторные частицы Ω-гиперон , Δ-резонансы
2 тензорные частицы гравитон , тензорные мезоны

На июль 2004 года максимальным спином среди известных барионов обладает барионный резонанс Δ(2950) со спином 15/2. Спин стабильных ядер не может превышать 9 2 ℏ {\displaystyle {\frac {9}{2}}\hbar } .

История

Сам термин "спин" в науку ввели С. Гаудсмит и Д. Уленбек в 1925 г. .

Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина .

Спин и магнитный момент

Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент , а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем . Отношение величины магнитного момента к величине спина называется гиромагнитным отношением , и, в отличие от орбитального углового момента, оно не равно магнетону ( μ 0 {\displaystyle \mu _{0}} ):

μ → ^ = g ⋅ μ 0 s → ^ . {\displaystyle {\hat {\vec {\mu }}}=g\cdot \mu _{0}{\hat {\vec {s}}}.}

Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц .

Спин и статистика

Вследствие того, что все элементарные частицы одного и того же сорта тождественны , волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц . В первом случае говорят, что частицы подчиняются статистике Бозе - Эйнштейна и называются бозонами . Во втором случае частицы описываются статистикой Ферми - Дирака и называются фермионами .

Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) - фермионами .

Обобщение спина

Введение спина явилось удачным применением новой физической идеи: постулирование того, что существует пространство состояний, никак не связанных с перемещением частицы в обычном

(англ. spin веретено) – фундаментальная характеристика микроскопической частицы (например атомного ядра или элементарной частицы), которая в некотором отношении аналогична «собственном момента импульса частицы». Спин является квантовой свойством частиц и не имеет аналогов в классической физике. Тогда как классический момент импульса возникает вследствие вращения массивного тела со конечными размерами, спин присущ даже частицам, которые на сегодня считаются точечными и не связан ни с одним вращением масс внутри такой частицы. (Спин неточкових частиц, например атомных ядер или адронов, является векторной суммой спинов и орбитального момента импульса ее составляющих, т.е. и в этом случае спин частично связан с вращательным движением внутри частицы.)
Спин может принимать только определенные (квантованные) значения:

Цели: 0,1,2,3 …
полуцелым: 1 / 2, 3 / 2, …

Спин является важной характеристокю элементарных частиц.
История открытия
Спин электрона открыли в 1925 Уленбек и Гоулдсмит, проводя эксперименты по расщеплению пучка электронов в неоднородном магнитном поле. Ученые надеялись увидеть, как пучок электронов расщепится на несколько, в залежнотсти от квантованного орбитального момента. Если бы угловой момент электронов равен нулю, то пучок не расщеплялся, если бы угловой момент равен , То пучок расщепился бы на три, и т.д., на 2L +1 пучки при угловом моменте . Результат превзошел все ожидания: пучок расщепился на два. Объяснить это можно было лишь приписав электрону собственный момент . Этот собственный момент электрона получил название спина. Сначала думали, что спин соответствует какому-то внутреннему вращению электрона, но вскоре Поль Дирак вывел релятивистский аналог уравнения Шредингера (так называемое уравнение Дирака), которое автоматически объясняло существование спина совсем из других принципов.
Понятие спина позволило построить теорию периодической системы, выяснить структуру атомных спектров, объяснить природу ковалентных связей, т.
Оператор спина
Математически спин описывают Спинор – столбиком с 2S +1 волновых функций, где S – это значение спина. Так частицы с нулевым спином описывают одной волновой функцией или скалярным полем, частицы со спином 1 / 2 (например электроны) – двумя волнового функциями или спинорно полем, частицы со спином 1 – тремя волновыми функциями или векторным полем.
Операторами спина являются матрицы размерности (2S +1) x (2S +1). В случае частиц со спином 1 / 2 оператор спина пропорционален матрицам Паули

Поскольку матрицы Паулу не коммутируют, то одновременно можно определить только собственные значения одной из них. Обычно выбирают? z. Следовательно, проекция спина на ось z для электрона может иметь следующие значения.

О состоянии с часто говорят, как о состоянии со спином направленным вверх, о состоянии с говорят, как о состоянии со спином, направленным вниз, хотя эти названия вполне условны, и не соответствуют никаким направлениям в пространстве.
Значения других компонент спина являются неопределенными.



Похожие статьи
 
Категории