Что такое галогены химии кратко. Реакции замещения с галогенами

20.09.2019

Здесь читатель найдет сведения о галогенах, химических элементах периодической таблицы Д. И. Менделеева. Содержание статьи позволит вам ознакомиться с их химическими и физическими свойствами, нахождением в природе, способах применения и др.

Общие сведенья

Галогены - это все элементы химической таблицы Д. И. Менделеева, находящиеся в семнадцатой группе. По более строму способу классификации это все элементы седьмой группы, главной подгруппы.

Галогены - это элементы, способные вступать в реакции практически со всеми веществами простого типа за исключением некоторого количества неметаллов. Все они являются энергетическими окислителями, потому в условиях природы, как правило, находятся в смешанной форме с другими веществами. Показатель химической активности галогенов уменьшается с возрастанием их порядковой нумерации.

Галогенами считаются следующие элементы: фтор, хлор, бром, йод, астат и искусственно созданный теннесин.

Как говорилось ранее, все галогены - это окислители с ярко выраженными свойствами, к тому же все они являются неметаллами. Внешний имеет семь электронов. Взаимодействие с металлами приводит к образованию ионной связи и солей. Почти все галогены, за исключением фтора, могут проявлять себя в качестве восстановителя, достигая высшей окислительной степени +7, однако для этого необходимо, чтобы они взаимодействовали с элементами, имеющими большую степень электроотрицательности.

Особенности этимологии

В 1841 г. шведский ученый-химик Й. Берцелиус предложил ввести термин галогенов, относя к ним известные в то время F, Br, I. Однако до введения этого термина по отношению ко всей группе таких элементов, в 1811 г., немецкий ученый И. Швейггер этим же словом назывался хлор, сам термин переводился с греческого языка как «солерод».

Атомное строение и окислительные степени

Конфигурация электронов внешней атомной оболочки галогенов имеет следующий вид: астат - 6s 2 6p 5 , йод - 5s 2 5p 5 , бром 4s 2 4p 5 , хлор - 3s 2 3p 5 , фтор 2s 2 2p 5 .

Галогены - это элементы, имеющие на электронной оболочке внешнего типа семь электронов, что позволяет им «без особых усилий» присоединять электрон, которого недостаточно для завершения оболочки. Обычно степень окисления проявляется в виде -1. Cl, Br, I и At вступая в реакцию с элементами, имеющими более высокую степень, начинают проявлять положительную окислительную степень: +1, +3, +5, +7. Фтор имеет постоянную окислительную степень -1.

Распространение

Ввиду своей высокой степени реакционной способности галогены обычно находятся в виде соединений. Уровень распространения в коре земли убывает в соответствии с увеличением атомного радиуса от F к I. Астат в коре земли измеряется вовсе в граммах, а теннессин создается искусственно.

Галогены встречаются в природе чаще всего в соединениях галогенидов, а йод также может принимать форму йодата калия или натрия. В связи со своей растворимостью в воде присутствуют в океанических водах и рассолах природного происхождения. F - малорастворимый представитель галогенов и чаще всего обнаруживается в породах осадочного типа, а его главный источник - это фторид кальция.

Физические качественные характеристики

Галогены между собой могут сильно отличаться, и они имеют следующие физические свойства:

  1. Фтор (F2) - это газ светло-желтого цвета, имеет резкий и раздражающий запах, а также не подвергается сжатию в обычных температурных условиях. Температура плавления равна -220 °С, а кипения -188 °С.
  2. Хлор (Cl 2) представляет собой газ, не сжимающийся при обычной температуре, даже находясь под воздействием давления, имеет удушливый, резкий запах и зелено-желтый окрас. Плавиться начинает при -101 °С, а кипеть при -34 °С.
  3. Бром (Br 2) - это летучая и тяжелая жидкость с буро-коричневым цветом и резким зловонным запахом. Плавится при -7 °С, а кипит при 58 °С.
  4. Йод (I 2) - это вещество твердого типа имеет тёмно-серый окрас, и ему свойственен металлический блеск, запах довольно резкий. Процесс плавления начинается при достижении 113,5 °С, а кипит при 184,885 °С.
  5. Редкий галоген - это астат (At 2), который является твердым веществом и имеет черно-синий цвет с металлическим блеском. Температура плавления соответствует отметке в 244 °С, а кипение начинается после достижения 309 °С.

Химическая природа галогенов

Галогены - это элементы с очень высокой окислительной активностью, которая ослабевает в направлении от F к At. Фтор, будучи самым активным представителем галогенов, реагировать может со всеми видами металлов, не исключая ни один известный. Большинство представителей металлов, попадая в атмосферу фтора, подвергаются самовоспламенению, при этом выделяя теплоту в огромных количествах.

Без подвергания фтора нагреванию он может реагировать с большим количеством неметаллов, например H2, C, P, S, Si. Тип реакций в таком случае является экзотермическим и может сопровождаться взрывом. Нагреваясь, F принуждает окисляться остальные галогены, а подвергаясь облучению, этот элемент способен и вовсе реагировать с тяжелыми газами инертной природы.

Вступая во взаимодействие с веществами сложного типа, фтор вызывает высоко энергетические реакции, например, окисляя воду, он может вызывать взрыв.

Реакционноспособным может быть и хлор, особенно в свободном состоянии. Уровень активности его меньше, чем у фтора, но он способен реагировать почти со всеми простыми веществам, но азот, кислород и благородные газы в реакцию не вступают с ним. Взаимодействуя с водородом, при нагревании или хорошем освещении хлор создает бурнопротекающую реакцию, сопровождаемую взрывом.

В реакциях присоединения и замещения Cl может реагировать с большим количеством веществ сложного типа. Способен вытеснять Br и I в результате нагревания из соединений, созданных ими с металлом или водородом, а также может вступать в реакцию со щелочными веществами.

Бром химически менее активный, чем хлор или фтор, но все же весьма ярко себя проявляет. Это обусловлено тем, что чаще всего бром Br используется в качестве жидкости, ведь в таком состоянии исходная степень концентрации при остальных одинаковых условиях выше, чем у Cl. Широко используется в химии, особенно органической. Может растворяться в H 2 O и реагировать с ней частично.

Галоген-элемент иод образует простое вещество I 2 и способен вступать в реакции с H 2 O, растворяется в йодидах растворов, образуя при этом комплексные анионы. От большинства галогенов I отличается тем, что он не вступает в реакции с большинством представителей неметаллов и не спеша реагирует с металлами, при этом его необходимо нагревать. С водородом реагирует, лишь подвергаясь сильному нагреванию, а реакция является эндотермической.

Редкий галоген астат (At) проявляет реакционные способности меньше йода, однако может реагировать с металлами. В результате диссоциации возникают как анионы, так и катионы.

Области применения

Соединения галогенов широко применяются человеком в самых разнообразных областях деятельности. Природный криолит (Na 3 AlF 6) используют для получения Al. Бром и йод в качестве простых веществ часто используют фармацевтические и химические компании. При производстве запчастей для машин часто используют галогены. Фары - это одна из таких деталей. Качественно выбрать материал для данной составной части машины очень важно, так как фары освещают дорогу в ночное время и являются способом обнаружения как вас, так и других автомобилистов. Одним из лучших составных материалов для создания фар считается ксенон. Галоген тем не менее ненамного уступает по качеству этому инертному газу.

Хороший галоген - это фтор, добавка, широко используемая при производстве зубных паст. Он помогает предотвращать возникновение заболевания зубов - кариеса.

Такой элемент-галоген, как хлор (Cl), находит свое применение в получении HCl, часто используется при синтезе органических веществ, таких как пластмасса, каучук, синтетические волокна, красители и растворители и т. д. А также соединения хлора используют в качестве отбеливателей льняного и хлопчатобумажного материала, бумаги и как средство для борьбы с бактериями в питьевой воде.

Внимание! Токсично!

Ввиду наличия очень высокой реакционной способности галогены по праву называются ядовитыми. Наиболее ярко способность к вступлению в реакции выражена у фтора. Галогены имеют ярко выраженные удушающие свойства и способны поражать ткани при взаимодействии.

Фтор в парах и аэрозолях считается одним из самых потенциально опасных форм галогенов, вредоносных для окружающих живых существ. Это связано с тем, что он слабо воспринимается обонянием и ощущается лишь по достижении большой концентрации.

Подводя итоги

Как мы видим, галогены являются очень важной частью периодической таблицы Менделеева, они имеют множество свойств, отличаются между собой по физическим и химическим качествам, атомному строению, степени окисления и способности реагировать с металлами и неметаллами. В промышленности используются разнообразным образом, начиная от добавок в средства личной гигиены и заканчивая синтезом веществ органической химии или отбеливателями. Несмотря на то что одним из лучших способов поддержания и создания света в фаре автомобиля является ксенон, галоген тем не менее ему практически не уступает и также широко используется и имеет свои преимущества.

Теперь вы знаете, что такое галоген. Сканворд с любыми вопросами об этих веществах для вас уже не помеха.

Все элементы периодической таблицы Менделеева объединяют в группы, в зависимости от их химических свойств. В данной статье мы разберем, что такое галогены (или галоиды).

Значение понятия галогены

Галогены - это элементы из периодической таблицы Менделеева 17 группы, а по устаревшей классификации - 7 главной подгруппы. К галогенам относится всего 5 химических элементов, среди которых фтор, хлор, иод, астат и бром. Все они являются неметаллами. Галогены - очень активные окислители, а на внешнем уровне данные элементы имеют по 7 электронов.

Что такое галогены, почему они получили такое название? Слово «галоген» образовалось от двух греческих слов, которые в совокупности означают «рождение соли». Один из элементов этой группы - хлор, вместе с натрием образует соль.

Физические свойства группы галогенов

Схожи, но по физическим характеристикам элементы отличаются друг от друга.

Фтор - это газообразное вещество желтого цвета, с очень неприятным и резким запахом. Хлор - газ зелено-желтого цвета, имеет тяжелый и отталкивающий аромат. Бром - жидкость коричневого цвета. Астат - иссиня-чёрное твердое вещество с резким запахом. Йод - серое Резюмируя вышеозначенную информацию, можно ответить на вопрос: «Что такое галогены?». Это и газы, и жидкости, и твердые тела.

Химические свойства группы галогенов

Основным общим свойством всех галогенов является то, что они все очень активные окислители. Самым активным галоидом является фтор, который реагирует со всеми металлами, а самый неактивный - астат.

Взаимодействие с галогенами у простых веществ (исключение составляют некоторые неметаллы) проходит легко. В природе они встречаются только в виде соединений.

Фтор

Такой как фтор был получен лишь в конце XIX века французским ученым по имени Анри Муассан. Фтор - это газ бледно-желтого цвета. Галогены являются типичными неметаллами и окислителями, а фтор из всех галогенов - самый активный. Сейчас этот галоген незаменим в промышленности ведь его используют при изготовлении труб, изоленты, различных тканевых покрытий, антипригарных поверхностей для сковородок и форм, а в медицине при изготовлении искусственных артерий и вен. В промышленности этот галоген разбавляют азотом.

Хлор

Хлор - знаменитый химический элемент, относится к группе галогенов. Что такое галогены, мы разобрали выше. Хлор сохраняет основные свойства элементов своей группы.

Название он получил от греческого слова «хлорос», что переводится как бледно-зеленый. Этот газ очень широко распространен в природе, он в больших количествах содержится в морской воде. Хлор - очень важный химический элемент, он практически незаменим при отбеливании, дезинфекции бассейнов, а также обеззараживанию питьевой воды.

Но хлор также известен и тем, что является опаснейшим смертельным оружием. В 1915 году немецкие войска использовали против французской армии порядка 6 тыс. баллонов с этим галогеном. Это смертельное оружие было придумано известным немецким химиком Фрицом Хабером.

Йод

Йод, или иод, - еще один химический элемент, который относится к группе галогенов. На самом деле в таблице Менделеева этот элемент называется не иначе как иод, но его тривиальным названием принято считать йод. Наименование элемента произошло от греческого слова, что в переводе на русский означает «фиалковый». Этот химический элемент в повседневной жизни встречается довольно часто. При взаимодействии с другими галогенами в основном с хлором получается отличное средство для дезинфекции ран и царапин. Сейчас иод применяют в медицине для профилактики болезней щитовидной железы.

Астат

Астат интересен тем, что никогда не был получен химиками в таком количестве, чтобы его можно было увидеть невооруженным глазом. И скорее всего, эта возможность никогда им не представится. Если бы специалисты и смогли получить большое количество этого химического элемента, он тут же и испарился бы, по причине возникновения высокой температуры, которая появляется в результате радиоактивного излучения этого элемента. Астат - самый редкий химический элемент, а небольшое его количество содержится в земной коре.

Среди галогенов астат - довольно бесполезный элемент, потому что на данный момент никакого применения ему не найдено.

Применение и значение

Несмотря на то что все галогены имеют схожие химические свойства, применяются они совершенно в разных сферах. Например, фтор очень полезен для зубов, именно поэтому его добавляют в зубные пасты. Применение лечебных и профилактических средств, в составе которых присутствует химический элемент фтор, предотвращает появление кариеса. Хлор используют для получения соляной кислоты, которая незаменима в промышленности и медицине. Хлор используют для изготовления каучука, пластмассы, растворителей, красителей, а также синтетических волокон. Соединения, в которых содержится этот элемент, используют в сельском хозяйстве для борьбы с вредителями. Галоген хлор незаменим для отбеливания бумаги и тканей. Считается, что применение хлора для обработки питьевой воды небезопасно. Бром, который является галогеном, а также иод часто используют в медицине.

Значение галогенов в жизни человека огромно. Если представить существование человечества без галоидов, то мы были бы лишены таких вещей, как фотографии, антисептические и дезинфицирующие средства, каучук, пластик, линолеум и многих других. Помимо этого, данные вещества необходимы организму человека, чтобы нормально функционировать, то есть играют важную биологическую роль. Хоть свойства галогенов и схожи, их роль в промышленности и медицине разная.

Химия Элементов

Неметаллы VIIА-подгруппы

Элементы VIIА-подгруппы являются типичными неметаллами с высокой

электротрицательностью, они имеют групповое название – «галогены».

Основные вопросы, рассматриваемые в лекции

Общая характеристика неметаллов VIIА-подгруппы. Электронное строение, важнейшие характеристики атомов. Наиболее характерные сте-

пени окисления. Особенности химии галогенов.

Простые вещества.

Природные соединения.

Соединения галогенов

Галогенводородные кислоты и их соли. Соляная и плавиковая ки-

слота, получение и применение.

Галогенидные комплексы.

Бинарные кислородные соединения галогенов. Неустойчивость ок-

Окислительно-восстановительные свойства простых веществ и со-

единений. Реакции диспропорционирования. Диаграммы Латимера.

Исполнитель:

Мероприятие №

Химия элементов VIIA-подгруппы

Общая характеристика

Марганец

Технеций

VIIА-группу образуют р-элементы: фтор F, хлор

Cl, бром Br, иод I и астат At.

Общая формула валентных электронов – ns 2 np 5 .

Все элементы VIIА-группы – типичные неметаллы.

Как видно из распреде-

ления валентных электронов

по орбиталям атомам

не хватает всего одного электрона

для формирования устойчивой восьмиэлектронной обо-

лочки, поэтому у них сильно выражена тенденция к

присоединению электрона.

Все элементы легко образуют простые однозаряд-

ные анионы Г – .

В форме простых анионов элементы VIIА-группы находятся в природной воде и в кристаллах природных солей, например, галита NaCl, сильвина KCl, флюорита

CaF2 .

Общее групповое название элементов VIIА-

группы «галогены» , т. е. «рождающие соли», связано с тем, что большинство их соединений с металлами пред-

ставляет собой типичные соли (CaF2 , NaCl, MgBr2 , KI), ко-

торые могут быть получены при непосредственном взаи-

модействии металла с галогеном. Свободные галогены получают из природных солей, поэтому название «галогены» также переводят, как «рожденные из солей».

Исполнитель:

Мероприятие №

Минимальная степень окисления (–1) является наиболее устойчивой

у всех галогенов.

Некоторые характеристики атомов элементов VIIА-группы приведены в

Важнейшие характеристики атомов элементов VIIА-группы

Относитель-

Сродство

ная электро-

отрицатель-

ионизации,

ность (по

Поллингу)

увеличение числа

электронных слоев;

увеличение размера

уменьшение элек-

троотрицательности

Галогены отличаются высоким сродством к электрону (максимальным у

Cl) и очень большой энергией ионизации (максимальной у F) и максимально

возможной в каждом из периодов электроотрицательностью. Фтор – самый

электроотрицательный из всех химических элементов.

Наличие одного неспаренного электрона в атомах галогенов обуславли-

вает объединение атомов в простых веществах в двухатомные молекулы Г2 .

Для простых веществ галогенов наиболее характерны окислитель-

ные свойства , наиболее сильные у F2 и ослабевающие при переходе к I2 .

Галогены характеризуются наибольшей реакционной способностью из всех неметаллических элементов. Фтор даже среди галогенов выделя-

ется чрезвычайно высокой активностью.

Элемент второго периода – фтор наиболее сильно отличается от дру-

гих элементов подгруппы . Это общая закономерность для всех неметаллов.

Исполнитель:

Мероприятие №

Фтор , как самый электроотрицательный элемент,не проявляет поло-

жительных степеней окисления . В любых соединениях, в том числе с ки-

слородом, фтор находится в степени окисления (-1).

Все остальные галогены проявляют положительные степени окис-

ления вплоть до максимальной +7.

Наиболее характерные степени окисления галогенов:

F : -1, 0;

Cl, Br, I: -1, 0, +1, +3, +5, +7.

У Cl известны оксиды, в которых он находится в степенях окисления: +4 и +6.

Наиболее важными соединениями галогенов, в положительных сте-

пенях окисления, являются кислородсодержащие кислоты и их соли.

Все соединения галогенов в положительных степенях окисления яв-

ляются сильными окислителями.

жуточную степень окисления. Диспропорционированию способствует щелочная среда.

Практическое применение простых веществ и кислородных соедине-

ний галогенов связано главным образом с их окислительным действием.

Самое широкое практическое применение находят простые вещества Cl2

и F2 . Наибольшее количество хлора и фтора расходуется в промышленном ор-

ганическом синтезе: в производстве пластмасс, хладоагентов, растворителей,

ядохимикатов, лекарств. Значительное количество хлора и йода используется для получения металлов и для их рафинирования. Хлор используется также

для отбеливания целлюлозы, для обеззараживания питьевой воды и в произ-

водстве хлорной извести и соляной кислоты. Соли оксокислот используются в производстве взрывчатых веществ.

Исполнитель:

Мероприятие №

Широкое практическое применение находят кислоты – соляная и плави-

Фтор и хлор принадлежат к двадцати самым распространенным элемен-

там, значительно меньше в природе брома и иода. Все галогены находятся в природе в степени окисления (–1). Лишь йод встречается в виде соли KIO3 ,

которая как примесь входит в чилийскую селитру (KNO3 ).

Астат – искусственно полученный радиоактивный элемент (его нет в природе). Неустойчивость At отражается в названии, которое происходит от греч. «астатос» – «неустойчивый». Астат является удобным –излучателем для радиотерапии раковых опухолей.

Простые вещества

Простые вещества галогенов образованы двухатомными молекулами Г2 .

В простых веществах при переходе от F2 к I2 с увеличением числа элек-

тронных слоев и возрастанием поляризуемости атомов происходит усиление

межмолекулярного взаимодействия, приводящее к изменению агрегатного со-

стояния при стандартных условиях.

Фтор (при обычных условиях) – желтый газ, при –181о С переходит в

жидкое состояние.

Хлор – желто-зеленый газ, переходит в жидкость при –34о С. С цветом га-

за связано название Cl, оно происходит от греческого «хлорос» – «желто–

зеленый». Резкое повышение температуры кипения у Cl2 по сравнению с F2 ,

указывает на усиление межмолекулярного взаимодействия.

Бром – темно-красная, очень летучая жидкость, кипит при 58,8о С. На-

звание элемента связано с резким неприятным запахом газа и образовано от

«бромос» – «зловонный».

Йод – темно-фиолетовые кристаллы, со слабым «металлическим» бле-

ском, которые при нагревании легко возгоняется, образуя фиолетовые пары;

при быстром охлаждении

паров до 114о С

образуется жидкость. Температура

Исполнитель:

Мероприятие №

кипения йода равна 183о С. От цвета паров йода происходит его название –

«иодос» – «фиолетовый».

Все простые вещества имеют резкий запах и являются ядовитыми.

Вдыхание их паров вызывает раздражение слизистых оболочек и дыхательных органов, а при больших концентрациях – удушье. Во время первой мировой войны хлор применяли в качестве отравляющего вещества.

Газообразный фтор и жидкий бром вызывают ожоги кожи. Работая с га-

логенами, следует соблюдать меры предосторожности.

Поскольку простые вещества галогенов образованы неполярными моле-

кулами, они хорошо растворяются в неполярных органических растворителях:

спирте, бензоле, четыреххлористом углероде и т. п. В воде хлор, бром и иод ограниченно растворимы, их водные растворы называют хлорной, бромной и иодной водой. Лучше других растворяется Br2 , концентрация брома в насы-

щенном растворе достигает 0,2 моль/л, а хлора – 0,1 моль/л.

Фтор разлагает воду:

2F2 + 2H2 O = O2 + 4HF

Галогены проявляют высокую окислительную активность и перехо-

дят в галогенидные анионы.

Г2 + 2e–  2Г–

Особенно высокой окислительной активностью обладает фтор. Фтор окисляет благородные металлы (Au, Pt).

Pt + 3F2 = PtF6

Взаимодействует даже с некоторыми инертными газами (криптоном,

ксеноном и радоном), например,

Xe + 2F2 = XeF4

В атмосфере F2 горят многие очень устойчивые соединения, например,

вода, кварц (SiO2 ).

SiO2 + 2F2 = SiF4 + O2

Исполнитель:

Мероприятие №

В реакциях с фтором даже такие сильные окислители, как азотная и сер-

ная кислота, выступают в роли восстановителей, при этом фтор окисляет вхо-

дящий в их состав О(–2).

2HNO3 + 4F2 = 2NF3 + 2HF + 3O2 H2 SO4 + 4F2 = SF6 + 2HF + 2O2

Высокая реакционная способность F2 создает трудности с выбором кон-

струкционных материалов для работы с ним. Обычно для этих целей использу-

ют никель и медь, которые, окисляясь, образуют на своей поверхности плотные защитные пленки фторидов. Название F связано с его агрессивным действи-

ем, оно происходит от греч. «фторос» – «разрушающий».

В ряду F2 , Cl2 , Br2 , I2 окислительная способность ослабевает из-за уве-

личения размера атомов и уменьшения электроотрицательности.

В водных растворах окислительные и восстановительные свойства ве-

ществ обычно характеризуют с помощью электродных потенциалов. В таблице приведены стандартные электродные потенциалы (Ео , В) для полуреакций вос-

становления галогенов. Для сравнения также приведено значение Ео для ки-

слорода – самого распространенного окислителя.

Стандартные электродные потенциалы для простых веществ галогенов

Ео , В, для реакции

O2 + 4e– + 4H+  2H2 O

Ео , В

для электродной

2Г– +2е– = Г2

Уменьшение окислительной активности

Как видно из таблицы, F2 – окислитель значительно более сильный,

чем О2 , поэтому F2 в водных растворах не существует, он окисляет воду,

восстанавливаясь до F– . Судя по значению Eо окислительная способность Cl2

Исполнитель:

Мероприятие №

также выше, чем у О2 . Действительно при длительном хранении хлорной воды происходит ее разложение с выделением кислорода и с образованием HCl. Но реакция идет медленно (молекула Cl2 заметно прочнее, чем молекула F2 и

энергия активации для реакций с хлором выше), быстрее происходит диспро-

порционирование:

Cl2 + H2 O HCl + HOCl

В воде оно не доходит до конца (К = 3,9 . 10–4 ), поэтому Cl2 существует в водных растворах. Еще большей устойчивостью в воде характеризуются Br2 и I2 .

Диспропорционирование это очень характерная окислительно-

восстановительная реакция для галогенов. Диспропорционирование уси-

ливается в щелочной среде.

Диспропорционирование Cl2 в щелочи приводит к образованию анионов

Cl– и ClO– . Константа диспропорционирования равна 7,5. 1015 .

Cl2 + 2NaOH = NaCl + NaClO + H2 O

При диспропорционировании йода в щелочи образуются I– и IO3 – . Ана-

логично йоду диспропорционирует Br2 . Изменение продукта диспропорцио-

нирования обусловлено тем, что анионы ГО– и ГО2 – у Br и I неустойчивы.

Реакция диспропорционирования хлора используется в промышленно-

сти для получения сильного и быстро действующего окислителя гипохлорита,

белильной извести, бертолетовой соли.

3Cl2 + 6 KOH = 5KCl + KClO3 + 3H2 O

Исполнитель:

Мероприятие №

Взаимодействие галогенов с металлами

Галогены энергично взаимодействуют со многими металлами, например:

Mg + Cl2 = MgCl2 Ti + 2I2  TiI4

ГалогенидыNa + , в которых металл имеет низкую степень окисления (+1, +2),

– это солеобразные соединения с преимущественно ионной связью. Как прави-

ло, ионные галогениды – это твердые вещества с высокой температурой плав-

Галогениды металлов, в которых металл имеет высокую степень окисле-

ния, – это соединения с преимущественно ковалентной связью.

Многие из них при обычных условиях являются газами, жидкостями или легкоплавкими твердыми веществами. Например, WF6 – газ, MoF6 – жидкость,

TiCl4 – жидкость.

Взаимодействие галогенов с неметаллами

Галогены непосредственно взаимодействуют со многими неметаллами:

водородом, фосфором, серой и др. Например:

H2 + Cl2 = 2HCl 2P + 3Br2 = 2PBr3 S + 3F2 = SF6

Связь в галогенидах неметаллов преимущественно ковалентная.

Обычно эти соединения имеют невысокие температуры плавления и кипения.

При переходе от фтора к йоду ковалентный характер галогенидов усиливается.

Ковалентные галогениды типичных неметаллов являются кислотными соединениями; при взаимодействии с водой они гидролизуются с образованием кислот. Например:

PBr3 + 3H2 O = 3HBr + H3 PO3

PI3 + 3H2 O = 3HI + H3 PO3

PCl5 + 4H2 O = 5HCl + H3 POинтерга-

лиды . В этих соединениях более легкий и более электроотрицательный галоген находится в степени окисления (–1), а более тяжелый – в положительной сте-

пени окисления.

За счет непосредственного взаимодействия галогенов при нагревании получаются: ClF, BrF, BrCl, ICl. Существуют и более сложные интергалиды:

ClF3 , BrF3 , BrF5 , IF5 , IF7 , ICl3 .

Все интергалиды при обычных условиях – жидкие вещества с низкими температурами кипения. Интергалиды имеют высокую окислительную ак-

тивность . Например, в парах ClF3 горят такие химически устойчивые вещества, как SiO2 , Al2 O3 , MgO и др.

2Al2 O3 + 4ClF3 = 4 AlF3 + 3O2 + 2Cl2

Фторид ClF 3 – агрессивный фторирующий реагент, действующий быст-

рее F2 . Его применяют в органических синтезах и для получения защитных пленок на поверхности никелевой аппаратуры для работы с фтором.

В воде интергалиды гидролизуются с образованием кислот. Например,

ClF5 + 3H2 O = HClO3 + 5HF

Галогены в природе. Получение простых веществ

В промышленности галогены получают из их природных соединений. Все

процессы получения свободных галогенов основаны на окислении галоге-

нид-ионов.

2Г –  Г2 + 2e–

Значительное количество галогенов находится в природных водах в виде анионов: Cl– , F– , Br – , I– . В морской воде может содержаться до 2,5 % NaCl.

Бром и иод получают из воды нефтяных скважин и морской воды.

Исполнитель:

Мероприятие №

Физические свойства галогенов

При обычных условиях F2 и С12-газы, Вr2-жидкость, I2 и At2- твердые вещества. В твердом состоянии галогены образуют молекулярные кристаллы. Жидкие галогены-диэлектрики. Все галогены, кроме фтора, растворяются в воде; йод растворяется хуже, чем хлор и бром, зато хорошо растворимы в спирте.

Химические свойства галогенов

Все галогены проявляют высокую окислительную активность, которая уменьшается при переходе от фтора к астату. Фтор - самый активный из галогенов, реагирует со всеми металлами без исключения, многие из них в атмосфере фтора самовоспламеняются, выделяя большое количество теплоты, например:

2Al + 3F2 = 2AlF3 + 2989 кДж,

2Fe + 3F2 = 2FeF3 + 1974 кДж.

Без нагревания фтор реагирует и со многими неметаллами (H2, S, С, Si, Р) - все реакции при этом сильно экзотермические, например:

Н2 + F2 = 2HF + 547 кДж,

Si + 2F2 = SiF4(г) + 1615 кДж.

При нагревании фтор окисляет все другие галогены по схеме

Hal2 + F2 = 2НalF

где Hal = Cl, Br, I, At, причем в соединениях HalF степени окисления хлора, брома, иода и астата равны +1.

Наконец, при облучении фтор реагирует даже с инертными (благородными) газами:

Хе + F2 = XeF2 + 152 кДж.

Взаимодействие фтора со сложными веществами также протекает очень энергично. Так, он окисляет воду, при этом реакция носит взрывной характер:

3F2 + ЗН2О = OF2 + 4HF + Н2О2.

Свободный хлор также очень реакционноспособен, хотя его активность и меньше, чем у фтора. Он непосредственно реагирует со всеми простыми веществами, за исключением кислорода, азота и благородных газов. Для сравнения приведем уравнения реакций хлора с теми же простыми веществами, что и для фтора:

2Al + 3Cl2 = 2AlCl3(кр) + 1405 кДж,

2Fe + ЗCl2 = 2FeCl3(кр) + 804 кДж,

Si + 2Cl2 = SiCl4(Ж) + 662 кДж,

Н2 + Cl2 = 2HCl(г)+185кДж.

Особый интерес представляет реакция с водородом. Так, при комнатной температуре, без освещения хлор практически не реагирует с водородом, тогда как при нагревании или при освещении (например, на прямом солнечном свету) эта реакция протекает со взрывом по приведенному ниже цепному механизму:



Cl2 + hν → 2Cl,

Cl + Н2 → HCl + Н,

Н + Cl2 → HCl + Cl,

Cl + Н2 → HCl + Н и т. д.

Возбуждение этой реакции происходит под действием фотонов (hν), которые вызывают диссоциацию молекул Cl2 на атомы - при этом возникает цепь последовательных реакций, в каждой из которых появляется частица, инициирующая начало последующей стадии.

Реакция между Н2 и Cl2 послужила одним из первых объектов исследования цепных фотохимических реакций. Наибольший вклад в развитие представлений о цепных реакциях внёс русский учёный, лауреат Нобелевской премии (1956 год) Н. Н. Семёнов.

Хлор вступает в реакцию со многими сложными веществами, например замещения и присоединения с углеводородами:

СН3-СН3 + Cl2 → СН3-СН2Cl + HCl,

СН2=СН2 + Cl2 → СН2Cl - СН2Cl.

Хлор способен при нагревании вытеснять бром или иод из их соединений с водородом или металлами:

Cl2 + 2HBr = 2HCl + Br2,

Cl2 + 2HI = 2HCl + I2,

Cl2 + 2KBr = 2KCl + Br2,

а также обратимо реагирует с водой:

Cl2 + Н2О = HCl + HClO - 25 кДж.

Хлор, растворяясь в воде и частично реагируя с ней, как это показано выше, образует равновесную смесь веществ, называемую хлорной водой.

Хлор может таким же образом реагировать (диспропорционировать) со щелочами:

Cl2 + 2NaOH = NaCl + NaClO + Н2О (на холоде),

3Cl2 + 6КОН = 5KCl + KClO3 + 3Н2О (при нагревании).

Химическая активность брома меньше, чем у фтора и хлора, но все же достаточно велика в связи с тем, что бром обычно ис­пользуют в жидком состоянии и поэтому его исходные концентрации при прочих равных условиях больше, чем у хлора.

Для примера приведем реакции взаимодействия брома с кремнием и водородом:

Si + 2Br2 = SiBr4(ж) + 433 кДж,

Н2 + Br2 = 2HBr(г) + 73 кДж.

Иод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании. Взаимодействие же иода с водородом происходит только при сильном нагревании, реакция является эндотермической и сильно обратимой:

Н2 + I2 = 2HI - 53 кДж.

Астат ещё менее реакционноспособен, чем иод. Но и он реагирует с металлами (например с литием):

2Li + At2 = 2LiAt - астатид лития.

Таким образом, химическая активность галогенов последовательно уменьшается от фтора к астату. Каждый галоген в ряду F - At может вытеснять последующий из его соединений с водородом или металлами.

Цинк - элемент побочной подгруппы второй группы, четвёртого периода периодической системы, с атомным номером 30. Цинк - хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка).

В природе. Цинк в природе как самородный металл не встречается. Из 27 минералов цинка практически важным являются цинковая обманка ZnS и цинковый шпат ZnCO3.

Получение. Цинк добывают из полиметаллических руд, содержащих Zn в виде сульфида. Руды обогащают, получая цинковые концентраты и одновременно свинцовые и медные концентраты. Цинковые концентраты обжигают в печах, переводя сульфид цинка в оксид ZnO:

2ZnS + 3O2 = 2ZnO = 2SO2

Чистый цинк из оксида ZnO получают двумя способами. По пирометаллургическому способу, существующему издавна, обожженный концентрат подвергают спеканию для придания зернистости и газопроницаемости, а затем восстанавливают углем или коксом при 1200-1300 °C: ZnO + С = Zn + CO.

Основной способ получения цинка - электролитический (гидрометаллургический). Обожженные концентраты обрабатывают серной кислотой; получаемый сульфатный раствор очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу в ваннах, плотно выложенных внутри свинцом или винипластом. Цинк осаждается на алюминиевых катодах.

Физические свойства . В чистом виде - пластичный серебристо-белый металл. При комнатной температуре хрупок, при 100-150 °C цинк пластичен. Температура плавления = 419,6 °C, температура кипения= 906,2 °C.

Химические свойства. Типичный пример металла, образующего амфотерные соединения. Амфотерными являются соединения цинка ZnO и Zn(OH)2. Стандартный электродный потенциал −0,76 В, в ряду стандартных потенциалов расположен до железа.

На воздухе цинк покрывается тонкой пленкой оксида ZnO. При сильном нагревании сгорает с образованием амфотерного белого оксида ZnO:

Оксид цинка реагирует как с растворами кислот:

так и щелочами:

Цинк обычной чистоты активно реагирует с растворами кислот:

и растворами щелочей:

образуя гидроксоцинкаты. С растворами кислот и щелочей очень чистый цинк не реагирует. Взаимодействие начинается при добавлении нескольких капель раствора сульфата меди CuSO4.

При нагревании цинк реагирует с галогенами с образованием галогенидов ZnHal2. С фосфором цинк образует фосфиды Zn3P2 и ZnP2. С серой и её аналогами - селеном и теллуром - различные халькогениды, ZnS, ZnSe, ZnSe2 и ZnTe.

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует. Нитрид Zn3N2 получают реакцией цинка с аммиаком при 550-600 °C.

В водных растворах ионы цинка Zn2+ образуют аквакомплексы 2+ и 2+.

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H 2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н 2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:




Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H 2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal 2 .

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке . Возгонкой , называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F 2 > Cl 2 > Br 2 > I 2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:




Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром и йод вытесняют серу из растворов сульфидов и или сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду.



Похожие статьи
 
Категории