Что значит двугранный угол при основании. Двугранный угол

23.09.2019

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

ГЛАВА ПЕРВАЯ ПРЯМЫЕ И ПЛОСКОСТИ

V. ДВУГРАННЫЕ УГЛЫ, УГОЛ ПРЯМОЙ С ПЛОСКОСТЬЮ,
УГОЛ ДВУХ СКРЕЩИВАЮЩИХСЯ ПРЯМЫХ, МНОГОГРАННЫЕ УГЛЫ

Двугранные углы

38. Определения. Часть плоскости, лежащая по одну сторону от какой-либо прямой, лежащей в этой плоскости, называется полуплоскостью . Фигура, образованная двумя полуплоскостями (Р и Q, черт. 26), исходящими из одной прямой (АВ), называется двугранным углом . Прямая АВ называется ребром , а полуплоскости Р и Q - сторонами или гранями двугранного угла.

Такой угол обозначается обыкновенно двумя буквами, поставленными у его ребра (двугранный угол АВ). Но если при одном ребре лежат нисколько двугранных углов, то каждый из них обозначают четырьмя буквами, из которых две средние стоят при ребре, а две крайние - у граней (например, двугранный угол SCDR) (черт. 27).

Если из произвольной точки D ребра АВ (черт. 28) проведём на каждой грани по перпендикуляру к ребру, то образованный ими угол CDE называется линейным углом двугранного угла.

Величина линейного угла не зависит от положения его вершины на ребре. Так, линейные углы CDE и C 1 D 1 E 1 равны, потому что их стороны соответственно параллельны и одинаково направлены.

Плоскость линейного угла перпендикулярна к ребру, так как она содержит две прямые, перпендикулярные к нему. Поэтому для получения линейного угла достаточно грани данного двугранного угла пересечь плоскостью, перпендикулярной к ребру, и рассмотреть получившийся в этой плоскости угол.

39. Равенство и неравенство двугранных углов. Два двугранных угла считаются равными, если они при вложении могут совместиться; в противном случае тот из двугранных углов считается меньшим, который составит часть другого угла.

Подобно углам в планиметрии, двугранные углы могут быть смежные, вертикальные и пр.

Если два смежных двугранных угла равны между собой, то каждый из них называется прямым двугранным углом .

Теоремы. 1) Равным двугранным углам соответствуют равные линейные углы.

2) Большему двугранному углу соответствует больший линейный угол.

Пусть РАВQ, и Р 1 А 1 В 1 Q 1 (черт. 29)-два двугранных угла. Вложим угол А 1 В 1 в угол АВ так, чтобы ребро А 1 В 1 совпало с ребром АВ и грань Р 1 с гранью Р.

Тогда если эти двугранные углы равны, то грань Q 1 совпадёт с гранью Q; если же угол А 1 В 1 меньше угла АВ, то грань Q 1 займёт некоторое положение внутри двугранного угла, например Q 2 .

Заметив это, возьмём на общем ребре какую-нибудь точку В и проведём через неё плоскость R, перпендикулярную к ребру. От пересечения этой плоскости с гранями двугранных углов получатся линейные углы. Ясно, что если двугранные углы совпадут, то у них окажется один и тот же линейный угол CBD; если же двугранные углы не совпадут, если, например, грань Q 1 займёт положение Q 2 , то у большего двугранного угла окажется больший линейный угол (именно: / CBD > / C 2 BD).

40. Обратные теоремы. 1) Равным линейным углам соответствуют равные двугранные углы.

2) Большему линейному углу соответствует больший двугранный угол .

Эти теоремы легко доказываются от противного.

41. Следствия. 1) Прямому двугранному углу соответствует прямой линейный угол, и обратно.

Пусть (черт. 30) двугранный угол PABQ прямой. Это значит, что он равен смежному углу QABP 1 . Но в таком случае линейные углы CDE и CDE 1 также равны; а так как они смежные, то каждый из них должен быть прямой. Обратно, если равны смежные линейные углы CDE и CDE 1 , то равны и смежные двугранные углы, т. е. каждый из ни должен быть прямой.

2) Bcе прямые двугранные углы равны, лотому что у них равны линейные углы.

Подобным же образом легко доказать, что:

3) Вертикальные двугранные углы равны .

4) Двугранные углы с соответственно параллельными и одинаково (или противоположно) направленными гранями равны.

5) Если за единицу двугранных углов возьмём такой двугранный угол, который соответствует единице линейных углов, то можно сказать, чтo двугранный угол измеряется его линейным углом.

В геометрии для изучения фигур используют две важные характеристики: длины сторон и углы между ними. В случае пространственных фигур к этим характеристиками добавляются двугранные углы. Рассмотрим, что это такое, а также опишем методику определения этих углов на примере пирамиды.

Понятие о двугранном угле

Каждый знает, что две пересекающиеся прямые образуют некоторый угол с вершиной в точке их пересечения. Этот угол можно измерить с помощью транспортира или воспользоваться тригонометрическими функциями для его вычисления. Образованный двумя прямыми угол называется линейным.

Теперь представим, что в трехмерном пространстве имеется две плоскости, которые пересекаются по прямой. Они изображена на рисунке.

Двугранным углом называется угол между двумя пересекающимися плоскостями. Так же как и линейный, он измеряется в градусах или радианах. Если к какой-либо точке прямой, по которой плоскости пересекаются, восстановить два перпендикуляра, лежащих в этих плоскостях, то угол между ними будет искомым двугранным. Определить этот угол проще всего, если воспользоваться уравнениями плоскостей в общем виде.

Уравнение плоскостей и формула для угла между ними

Уравнение любой плоскости в пространстве в общем виде записывается так:

A × x + B × y + C × z + D = 0.

Здесь x, y, z - это координаты точек, принадлежащих плоскости, коэффициенты A, B, C, D - некоторые известные числа. Удобство этого равенства для вычисления двугранных углов заключается в том, что оно в явном виде содержит координаты направляющего вектора плоскости. Будем обозначать его n¯. Тогда:

Вектор n¯ перпендикулярен плоскости. Угол между двумя плоскостями равен углу между их n 1 ¯ и n 2 ¯. Из математики известно, что угол, образованный двумя векторами, однозначно определяется из их скалярного произведения. Это позволяет записать формулу для вычисления двугранного угла между двумя плоскостями:

φ = arccos (|(n 1 ¯ × n 2 ¯)| / (|n 1 ¯| × |n 2 ¯|)).

Если подставить координаты векторов, то формула запишется в явном виде:

φ = arccos (|A 1 × A 2 + B 1 × B 2 + C 1 × C 2 | / (√(A 1 2 + B 1 2 + C 1 2) × √(A 2 2 + B 2 2 + C 2 2))).

Знак модуля в числителе используется, чтобы определить только острый угол, поскольку двугранный угол всегда меньше или равен 90 o .

Пирамида и ее углы

Пирамидой называют фигуру, которая образована одним n-угольником и n треугольниками. Здесь n - целое число, равное количеству сторон многоугольника, который является основанием пирамиды. Данная пространственная фигура является многогранником или полиэдром, поскольку она состоит из плоских граней (сторон).

Многогранника-пирамиды могут быть двух типов:

  • между основанием и боковой стороной (треугольником);
  • между двумя боковыми сторонами.

Если рассматривается пирамида правильная, то названные углы для нее определить несложно. Для этого по координатам трех известных точек следует составить уравнение плоскостей, а затем воспользоваться приведенной в пункте выше формулой для угла φ.

Ниже приведем пример, в котором покажем, как найти двугранные углы при основании пирамиды четырехугольной правильной.

Четырехугольная и угол при ее основании

Предположим, что дана правильная пирамида с квадратным основанием. Длина стороны квадрата равна a, высота фигура составляет h. Найдем угол между основанием пирамиды и ее боковой стороной.

Поместим начало координатной системы в центр квадрата. Тогда координаты точек A, B, C, D, показанных на рисунке, будут равны:

A = (a/2; -a/2; 0);

B = (a/2; a/2; 0);

C = (-a/2; a/2; 0);

Рассмотрим плоскости ACB и ADB. Очевидно, что направляющий вектор n 1 ¯ для плоскости ACB будет равен:

Для определения направляющего вектора n 2 ¯ плоскости ADB поступим следующим образом: найдем произвольные два вектора, которые ей принадлежат, например, AD¯ и AB¯, затем, вычислим их векторное произведение. Его результат даст координаты n 2 ¯. Имеем:

AD¯ = D - A = (0; 0; h) - (a/2; -a/2; 0) = (-a/2; a/2; h);

AB¯ = B - A = (a/2; a/2; 0) - (a/2; -a/2; 0) = (0; a; 0);

n 2 ¯ = = [(-a/2; a/2; h) × (0; a; 0)] = (-a × h; 0; -a 2 /2).

Поскольку умножение и деление вектора на число не изменяет его направления, то преобразуем полученный n 2 ¯, разделив его координаты на -a, получим:

Мы определили направляющие вектора n 1 ¯ и n 2 ¯ для плоскостей основания ACB и боковой стороны ADB. Остается воспользоваться формулой для угла φ:

φ = arccos (|(n 1 ¯ × n 2 ¯)| / (|n 1 ¯| × |n 2 ¯|)) = arccos (a / (2 × √h 2 + a 2 /4)).

Преобразуем полученное выражение и перезапишем его так:

φ = arccos (a / √(a 2 + 4 × h 2)).

Мы получили формулу для двугранного угла при основании для правильной четырехугольной пирамиды. Зная высоту фигуры и длину ее стороны, можно рассчитать угол φ. Например, для пирамиды Хеопса, сторона основания которой составляет 230,4 метра, а начальная высота равнялась 146,5 метра, угол φ будет равен 51,8 o .

Определить двугранный угол для четырехугольной правильной пирамиды также можно с помощью геометрического метода. Для этого достаточно рассмотреть прямоугольный треугольник, образованный высотой h, половиной длины основания a/2 и апофемой равнобедренного треугольника.


Двугранный угол. Линейный угол двугранного угла. Двугранным углом называется фигура, образованная двумя не принадлежащим одной плоскости полуплоскостями, имеющими общую границу – прямую а. Полуплоскости, образующие двугранный угол, называются его гранями, а общая граница этих полуплоскостей – ребром двугранного угла. Линейным углом двугранного угла называется угол, сторонами которого являются лучи, по которым грани двугранного угла, пересекаются плоскостью, перпендикулярной ребру двугранного угла. У каждого двугранного угла сколько угодно линейных углов: через каждую точку ребра можно провести плоскость, перпендикулярный этому ребру; лучи, по которым эта плоскость пересекает грани двугранного угла, и образуют линейные углы.


Все линейные углы двугранного угла равны между собой. Докажем, что если равны двугранные углы, образованные плоскостью основания пирамиды КАВС и плоскостям ее боковых граней, то основание перпендикуляра, проведенного из вершины К, является центром вписанной в треугольник АВС окружности.


Доказательство. Прежде всего, построим линейные углы равных двугранных углов. По определению, плоскость линейного угла должна быть перпендикулярна ребру двугранного угла. Следовательно, ребро двугранного угла должно быть перпендикулярно сторонам линейного угла. Если КО перпендикуляр к плоскости основания, то можно провести ОР перпендикуляр АС, ОR перпендикуляр СВ, OQ перпендикулярAB, а затем соединить точки P, Q, R С точкой К. Тем самым, мы построим проекцию наклонных РК, QK, RK так, что ребра АС, СВ, АВ перпендикулярны этим проекциям. Следовательно, эти ребра перпендикулярны и самим наклонным. И потому плоскости треугольников РОК, QOK, ROK перпендикулярны соответствующим ребрам двугранного угла и образуют те равные линейные углы, о которых сказано в условии. Прямоугольные треугольники РОК, QOK, ROK равны (так как у них общий катет ОК и равны противолежащие этому катету углы). Следовательно, ОР = OR = OQ. Если провести окружность с центром О и радиусом ОР, то стороны треугольника АВС перпендикулярны радиусам ОР, OR и OQ а потому являются касательными к этой окружности.


Перпендикулярность плоскостей. Плоскость альфа и бета называются перпендикулярными, если линейный угол одного из двугранных углов, образовавшихся при их пересечении равен 90". Признаки перпендикулярности двух плоскостей Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.






На рисунке изображен прямоугольный параллелепипед. Его основаниями служат прямоугольники ABCD и A1B1C1D1. А боковые ребра АА1 ВВ1, СС1, DD1, перпендикулярны к основаниям. Отсюда следует что АА1 перпендикуляр АВ, т. е. боковая грань – прямоугольник. Таким образом, можно обосновать свойства прямоугольного параллелепипеда: В прямоугольном параллелепипеде все шесть граней – прямоугольники. В прямоугольном параллелепипеде все шесть граней – прямоугольники. Все двугранные углы прямоугольного параллелепипеда – прямые. Все двугранные углы прямоугольного параллелепипеда – прямые.


Теорема Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. Обратимся снова к рисунку, И докажем что АС12 =АВ2+AD2+АА12 Так как ребро СС1 перпендикулярно к основанию АВСD то угол АСС1 прямой. Из прямоугольного треугольника АСС1 по теореме Пифагора получаем АС12=АС2+СС12. Но АС - диагональ прямоугольника АВСD, поэтому АС2 = АВ2+АD2. Кроме того, СС1 = АА1. Следовательно АС12= АВ2+АD2+AA12 Теорема доказана.







ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

В планиметрии основными объектами являются прямые, отрезки, лучи и точки. Лучи исходящие из одной точки, образуют одну их геометрических фигур-угол.

Мы знаем, что линейный угол измеряется в градусах и радианах.

В стереометрии к объектам добавляется плоскость. Фигура, образованная прямой а и двумя полуплоскостями с общей границей а, не принадлежащими одной плоскости в геометрии называется двугранным углом. Полуплоскости - это грани двугранного угла. Прямая а - это ребро двугранного угла.

Двухгранный угол как и линейный угол можно назвать, измерить, построить. Это и предстоит нам выяснить в этом уроке.

Найдём двухгранный угол на модели тетраэдра АВСD.

Двугранный угол с ребром АВ называют CABD, где С и D точки принадлежащие разным граням угла а ребро АВ называют в середине

Вокруг нас достаточно много предметов с элементами в виде двухгранного угла.

Во многих городах в парках установлены специальные скамейки для примирения. Скамейка выполнена в виде двух сходящихся к центру наклонных плоскостей.

При строительстве домов часто используется так называемая двухскатная крыша. На этом доме крыша выполнена в виде двухгранного угла в 90 градусов.

Двугранный угол тоже измеряется в градусах или радианах, но как его измерить.

Интересно заметить, что крыши домов лежат на стропилах. А обрешётка стропил образует два ската крыши под заданным углом.

Перенесем изображение на чертёж. На чертеже для нахождения двухгранного угла на его ребре отмечается точка В. Из этой точки проводятся два луча ВА и ВС перпендикулярно ребру угла. Образованный этими лучами угол АВС называется линейным углом двугранного угла.

Градусная мера двугранного угла равна градусной мере его линейного угла.

Измерим угол АОВ.

Градусная мера данного двугранного угла равна шестидесяти градусам.

Линейных углов для двугранного угла можно провести бесконечное количество, важно знать, что все они равны.

Рассмотрим два линейных угла АОВ и А1О1В1 . Лучи ОА и О1А1 лежат в одной грани и перпендикулярны к прямой ОО1, поэтому они сонаправлены. Лучи ОВ и О1В1 так же сонаправлены. Поэтому угол АОВ равен углуА1О1В1 как углы с сонаправленными сторонами.

Так двугранный угол характеризуется линейным углом, а линейные углы бывают острые, тупые и прямые. Рассмотрим модели двугранных углов.

Тупой угол, если его линейный угол от 90 до 180 градусов.

Прямой угол, если его линейный угол равен 90 градусов.

Острый угол, елси его линейный угол от 0 до 90 градусов.

Докажем одно из важных свойств линейного угла.

Плоскость линейного угла перпендикулярна к ребру двугранного угла.

Пусть угол АОВ - линейный угол данного двугранного угла. По построению лучи АО и ОВ перпендикулярные прямой а.

Через две пересекающиеся прямые АО и ОВ проходит плоскость АОВ по теореме: Через две пересекающиеся прямые проходит плоскость и притом только одна.

Прямая а перпендикулярна двум пересекающимся прямым лежащим в этой плоскости, значит по признаку перпендикулярности прямой и плоскости прямая а перпендикулярна плоскости АОВ.

Для решения задач важно уметь строить линейный угол заданного двухгранного угла. Построить линейный угол двугранного угла с ребром АВ для тетраэдра АВСD.

Речь идет о двугранном угле, который образован, во-первых, ребром АВ, одной гранью АВD, второй гранью АВС.

Вот один из способов построения.

Проведем перпендикуляр из точки D к плоскости АВС, Отметим точку М основание перпендикуляра. Вспомним, что в тетраэдре основание перпендикуляра совпадает с центром вписанной окружности в основание тетраэдра.

Проведем наклонную из точки D перпендикулярно к ребру АВ, отметим точку N основание наклонной.

В треугольнике DMN отрезок NM будет проекций наклонной DN на плоскость АВС. По теореме о трёх перпендикулярах ребро АВ будет перпендикулярно проекции NМ.

Значит cтороны угла DNM перпендикулярны к ребру АВ, значит построенный угол DNM искомый линейный угол.

Рассмотрим пример решения задачи на вычисление двугранного угла.

Равнобедренный треугольник АВС и правильный треугольник АDB не лежат в одной плоскости. Отрезок CD является перпендикуляром к плоскости ADB. Найдите двугранный угол DABC, если AC=CB=2 см, АB= 4см.

Двугранный угол DABC равен его линейному углу. Построим этот угол.

Проведем наклонную СМ перпендикулярно к ребру АВ, так как треугольник АСВ равнобедренный, то точка М совпадёт с серединой ребра АВ.

Прямая СD по условию перпендикулярна плоскости ADB, значит перпендикулярна прямой DM лежащей в этой плоскости. А отрезок МD является проекцией наклонной СМ на плоскость АDВ.

Прямая АВ перпендикулярна наклонной СМ по построению, значит по теореме о трех перпендикулярах перпендикулярна проекции MD.

Итак к ребру АВ найдены два перпендикуляра СМ и DМ. Значит они образуют линейный угол СMD двугранного угла DАВС. И нам останется его найти из прямоугольного треугольника СDM.

Так отрезок СМ медиана и высота равнобедренного треугольника АСВ, то по теореме Пифагора катет СМ равен 4 см.

Из прямоугольного треугольника DMB по теореме Пифагора катет DM равен двум корням из трёх.

Косинус угла из прямоугольного треугольника равен отношению прилежащего катета МD к гипотенузе СМ и равен три корня из трёх на два. Значит угол СМD равен 30 градусам.



Похожие статьи
 
Категории