Генетика: основные термины и понятия. Основы генетики

23.09.2019

В сегодняшний век интеграции очень сложно определить границы практически любой науки. Это касается в том числе и генетики. Мы, конечно, можем использовать заштампованное «наука о наследственности и изменчивости » но это не передает всей сути и масштаба этой дисциплины. При том, что генетика присутствует везде – медицине, истории, криминалистике и даже спорте. А что уж говорить о современной биологии.

Однако еще относительно недавно эта молодая наука была чуть ли не самой обособленной областью биологической науки. И лишь в последней трети прошлого века начался её бурный прогресс.

Как генетика стала всеобъемлющей

Особенностью генетики всегда являлась её синтетическая методология, отличающая её от аналитической методологии остальных направлений биологии. Так, исследуя объект своего изучения, она не делила его на части, а косвенно, наблюдая за целым (соотношение признаков при скрещиваниях) и основываясь на математике, изучала его. Подтверждением же верности её выводов были живые организмы с предсказанными признаками. И как же обособленная наука заняла, возможно, центральное место в современной биологии?

Начиная с 50-х годов ХХ века бурно развивалась другая новая наука - молекулярная биология. Аналитическая наука изначально совершено противоположна генетике. Однако предметы этих двух дисциплин во многом пересекались: они обе занимались изучением передачи и реализации наследственной информации, однако двигались они с противоположных сторон. Генетика, если можно так сказать, «снаружи», молекулярная биология - «изнутри».

И наконец в конце ХХ века генетика и молекулярная биология «встретились», и умозрительные объекты генетических исследований обрели конкретную физико-химическую форму, а молекулярная биология стала синтетической наукой. И именно с этого момента до неразличимости стерлись границы генетики как науки – было невозможно определить, где кончается молекулярная биология или начинается генетика. А для обозначения новой зародившейся синтетической науки появилось название «молекулярная генетика».

А где же классическая генетика?

Титулом «классическая генетика» стали называть генетику домолекулярного периода вместе со всеми её подходами, основанными на теории вероятности и скрещиваниях. Но вместе с этим титулом её отправили в «почетную отставку». Классическая генетика – это наука, в которой не совершается больше открытий, но крайне необходимая для понимания основных закономерностей наследственности и изменчивости, без понимания которых многие области научного знания не достигли бы тех высот, которые им уже покорились.

Когда зародилась генетика?

Принято говорить, что генетика зародилась, когда чешский монах-августинец Грегор Мендель провел свои опыты на горохе. Стоит отметить что научное сообщество того периода не придало значения работам Менделя, и признание они получили спустя не один десяток лет. Но вопросами наследственности и изменчивости ученые занимались и до него, но о их работах вспоминают очень редко.

Так еще в XVIII веке ботаники начали заниматься экспериментальным изучением наследования признаков растений. Стоит упомянуть Йозефа Готлиба Кельрейтера, с 1756 по 1761 г.г., работавшего в Академии наук в Санкт-Петербурге. Именно там он провел первые опыты по искусственной гибридизации растений, результаты 136 были опубликованы.

В опытах с дурманом, табаком и гвоздиками Кельрейтор установил равноправие "матери"и "отца" при передаче признаков потомкам, а также доказал существование пола у растений. Но самым важным вкладом его в науку стал новый метод изучения наследственности - метод искусственной гибридизации. Используя его, французы Огюстен Сажрэ и Шарль Виктор Ноден в середине XIX в., открыли явление доминантности. Все накопленные факты требовали своего осмысления. Именно в осмысление этих фактов и заключается главная залуга Грегора Менделя.

Современная генетика

Современная генетика уже очень далеко шагнула от классического учения Менделя и приобретает все большее значение в сферах медицины, биологии, сельского хозяйства и животноводства. Современная генетика - это прежде всего молекулярная генетика. На ее основе производится селекция полезных микроорганизмов, растений и животных. Генетически модифицированные организмы обладают полезными свойствами, не характерными для их родственников из "дикой" природы. Например, листья генетически модифицированного картофеля являются несъедобными для колорадского жука - злейшего врага картошки и тех, кто ее выращивает. Количество генетически модифицированных продуктов, потребляемых человечеством, растет с каждым годом.

Учитывая тот факт, что огромное количество заболеваний человека являются генетически обусловленными, невозможно переоценить значение генетики для медицины. После того, как в начале 21 века был расшифрован геном человека, методы профилактики наследственных патологий и борьбы с негативным воздействием генов становятся все эффективнее. Например, вероятность и риск развития хронических заболеваний может быть предсказан задолго до рождения ребенка, также появляются методы, позволяющие свести этот риск к минимуму.

Если Вам нужно разобраться с решением задач или по генетике в короткий срок - не стесняйтесь обращаться к нашим авторам. Мы поможем решить любой вопрос с учебой, даже если ситуация кажется безнадежной!

Генетика (от греч. "генезис" - происхождение) - наука о закономерностях наследственности и изменчивости организмов.
Ген (от греч. "генос"-рождение)-участок молекулы ДНК, отвечающий за один признак, т. е. за структуру определенной молекулы белка.
Альтернативные признаки - взаимоисключающие, контрастные признаки (окраска семян гороха желтая и зеленая).
Гомологичные хромосомы (от греч. "гомос" - одинаковый) - парные хромосомы, одинаковые по форме, размерам, набору генов. В диплоидной клетке набор хромосом всегда парный:
одна хромосома из пары материнского происхождения, другая - отцовского.
Локус - участок хромосомы, в котором расположен ген.
Аллельные гены - гены, расположенные в одних и тех же локусах гомологичных хромосом. Контролируют развитие альтернативных признаков (доминантных и рецессивных - желтая и зеленая окраска семян гороха).
Генотип - совокупность наследственных признаков организма, полученных от родителей,- наследственная программа развития.
Фенотип - совокупность признаков и свойств организма, проявляющаяся при взаимодействии генотипа со средой обитания.
Зигота (от греч. "зиготе" - спаренная) - клетка, образующаяся при слиянии двух гамет (половых клеток) - женской (яйцеклетки) и мужской (сперматозоида). Содержит диплоидный (двойной) набор хромосом.
Гомозигота (от греч. "гомос" - одинаковый и зигота) зигота, имеющая одинаковые аллели данного гена (оба доминантные АА или оба рецессивные аа). Гомозиготная особь в потомстве не дает расщепления.
Гетерозигота (от греч. "гетерос" - другой и зигота) - зигота, имеющая два разных аллеля по данному гену (Аа, Вb). Гетерозиготная особь в потомстве дает расщепление по данному признаку.
Доминантный признак (от лат. "едоминас" - господствующий) - преобладающий признак, проявляющийся в потомстве у
гетерозиготных особей.
Рецессивный признак (от лат. "рецессус" - отступление) признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков, полученных при скрещивании.
Гамета (от греч. "гаметес" - супруг) - половая клетка растительного или животного организма, несущая один ген из аллельной пары. Гаметы всегда несут гены в "чистом" виде, так как образуются путем мейотического деления клеток и содержат одну из пары гомологичных хромосом.
Цитоплазматическая наследственность - внеядерная наследственность, которая осуществляется с помощью молекул ДНК, расположенных в пластидах и митохондриях.
Модификация (от лат. "модификацио"-видоизменение)- ненаследственное изменение фенотипа, возникающее под влиянием факторов внешней среды в пределах нормы реакции генотипа.
Модификационная изменчивость - изменчивость фенотипа. Реакция конкретного генотипа на разные условия среды обитания.
Вариационный ряд - ряд модификационной изменчивости признака, слагающийся из отдельных значений видоизменений, расположенных в порядке увеличения или уменьшения количественного выражения признака (размеры листьев, число цветков в колосе, изменение окраски шерсти).
Вариационная кривая - графическое выражение изменчивости признака, отражающее как размах вариации, так и частоту встречаемости отдельных вариант.
Норма реакции - предел модификационной изменчивости признака, обусловленный генотипом. Пластичные признаки обладают широкой нормой реакции, непластичные- узкой.
Мутация (от лат. "мутацио" - изменение, перемена) - наследственное изменение генотипа. Мутации бывают: генные, хромосомные, генеративные (у гамет), внеядерные (цитоплазматиче-ские) и т. д.
Мутагенный фактор - фактор, вызывающий мутацию. Существуют естественные (природные) и искусственные (вызванные человеком) мутагенные факторы.
Моногибридное скрещивание- скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.
Дигибридное скрещивание-скрещивание форм, отличающихся друг от друга по двум парам альтернативных признаков.
Анализирующее скрещивание- скрещивание испытуемого организма с другим, являющимся по данному признаку рецессивной гомозиготой, что позволяет установить генотип испытуемого. Применяется в селекции растений и животных.
Сцепленное наследование - совместное наследование генов, локализованных в одной хромосоме; гены образуют группы сцепления.
Кроссинговср (перекрест) - взаимный обмен гомологичными участками гомологичных хромосом при их конъюгации (в профазе I мейоза I), приводящий к перегруппировке исходных комбинаций генов.
Пол организмов - совокупность морфологических и физиологических особенностей, которые определяются в момент оплодотворения сперматозоидом яйцеклетки и зависят от половых хромосом, которые несет сперматозоид.
Половые хромосомы - хромосомы, по которым мужской пол отличается от женского. Половые хромосомы женского организма все одинаковы (XX) и определяют женский пол. Половые хромосомы мужсквго организма разные(XY): X определяет женский
пол, Y- мужской пол. Поскольку все сперматозоиды образуются путем мейотического деления клеток, половина их несет Х-хро-мосомы, а половина - У-хромосомы. Вероятность получения мужского и женского пола одинакова,
Генетика популяций - раздел генетики, изучающий генотипический состав популяций. Это позволяет рассчитывать частоту мутантных генов, вероятность встречаемости их в гомо- и гетерозиготном состоянии, а также следить за накоплением в популяциях вредных и полезных мутаций. Мутации служат материалом для естественного и искусственного отбора. Данный раздел генетики был основан С. С. Четвериковым и получил дальнейшее развитие в трудах Н. П. Дубинина.


Генетика – это биологическая наука о наследственности и изменчивости организмов и методах управления ими.

Генетика по праву может считаться одной из самых важных областей биологии. Она является научной основой для разработки практических методов селекции, т.е. создания новых пород животных, видов растений, культур микроорганизмов с нужными человеку признаками.

На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Элементарными дискретными единицами наследственности и изменчивости являются гены.

Отцом генетики принято считать чешского монаха Грегора Менделя. Он был учителем физики и естествознания в обычной средней школе, а всё своё свободное время отдавал выращиванию растений в саду монастыря. Мендель занимался этим не из гастрономических интересов, а для изучения закономерностей наследования признаков. Опыты по гибридизации растений проводились и до Менделя, но никто из его предшественников не делал попыток как-то проанализировать свои результаты.

Мендель взял семена гороха с пурпурными цветками и семена сорта, у которого цветки были белые. Когда из них выросли растения и зацвели, он удалил из пурпурного цветка тычинки и перенёс на его пестик пыльцу белого цветка. Через положенное время образовались семена, которые Мендель следующей весной опять посадил на своём огороде. Вскоре взошли новые растения. Результат превзошёл все ожидания: растения оказались с пурпурными цветками, среди них не было ни одного белого. Мендель ни один раз повторял свои опыты, но результат был один и тот же. Итак, гибриды всегда приобретают один из родительских признаков.

Важнейший результат опытов Менделя: в гибридах, полученных от скрещивания растений с разными признаками, не происходит никакого растворения признаков, а один признак (более сильный, или, как назвал его Мендель, доминантный) подавляет другой (более слабый или рецессивный).

Но Мендель не остановился на достигнутом. Он взял и скрестил между собой пурпурные растения гороха, полученные в результате этого опыта. В результате из бутонов появились и пурпурные и белые цветки. Признак белой окраски, исчезнувшей после первого скрещивания, вновь проявил себя. Самым интересным было то, что растений с пурпурными цветками было ровно в 3 раза больше, чем с белыми.

Похожие результаты были получены ещё в четырёх опытах, и во всех случаях отношение доминантных и рецессивных признаков после второго скрещивания составляло в среднем 3:1

Знания, которыми обладал Мендель, были ничтожны, но сделанные им выводы намного опережали свой век. Мендель высказал предположение, которое вскоре стало самым важным из открытых им законов. Он приходит к мысли, что половые клетки (гаметы) несут только по одному задатку каждого из признаков и чисты от других задатков этого же признака. Этот закон получил название закона чистоты гамет, который не потерял своего значения даже сейчас. Изучение наследственности уже давно было связано с преставлением о ее корпускулярной природе. В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал “элементами”. Позднее их стали называть “факторами” и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому.

Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена:

а) ген как единица рекомбинации.

На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;

б) ген как единица мутирования.

В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию.

в) ген как единица функции.

Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.

Но как часто бывает в науке, исследования, которые могли означать рождение нового направления в биологии, были забыты на несколько десятилетий. Настоящая история генетики началась в 1900 году, когда закономерности, обнаруженные ещё Менделем, были снова «открыты» учёными. Три ботаника, голландец Гуго Де Фриз, немец К. Корренс и австриец К. Чермак, занимались изучением закономерностей наследования признаков при скрещивании.

Де Фриз исследовал энотеру, мак и дурман и открыл закон расщепления признаков у гибридов. Корренс открыл тот же закон расщепления, но только на кукурузе, а Чермак - на горохе. Затем, учёные решили изучать мировую литературу по этим вопросам и натолкнулись на исследования Менделя. Оказалось, что ничего нового они не открыли, более того, выводы Менделя были глубже их собственных.

Слава Менделя распространилась моментально. Во всём мире сразу же нашлось множество последователей, которые повторили его опыт на различных объектах. В научном обиходе появился даже особый термин – «менделирующие признаки», - то есть признаки, подчиняющиеся законам Менделя.

Генетика как наука решает следующие задачи: изучает способы хранения генетической информации у разных организмов (вирусов, бактерий, растений, животных и человека) и её материальные носители; анализирует способы передачи наследственной информации от одного поколения клеток и организмов к другому; выявляет механизмы и закономерности реализации генетической информации в процессе индивидуального развития и влияние на них условий среды обитания; изучает закономерности и механизмы изменчивости и её роль в эволюционном процессе; изыскивает способы исправления повреждённой генетической информации.

Для решения задач используются разные методы исследования.

1. Метод гибридологического анализа. Он позволяет выявлять закономерности наследования отдельных признаков при половом размножении организмов.

2. Цитогенетический метод позволяет изучать кариотип клеток организма и выявлять геномные и хромосомные мутации.

3. Генеалогический метод предполагает изучение родословных животных и человека и позволяет устанавливать тип наследования того или иного признака, зиготность организмов и вероятность проявления признаков в будущих поколениях.

4. Близнецовый метод основан на изучении проявления признаков у однояйцевых и двуяйцевых близнецов. Он позволяет выявить роль наследственности и внешней среды в формировании конкретных признаков.



Похожие статьи
 
Категории