История и достижения. Биотехнология

15.10.2019

Условно можно выделить следующие основные направления биотехнологии:

1) биотехнология пищевых продуктов;

2) биотехнология препаратов для сельского хозяйства;

3) биотехнология препаратов и продуктов для промышленного и бытового использования;

4) биотехнология лекарственных препаратов;

5) биотехнология средств диагностики и реактивов.

Биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.

Генная и клеточная инженерия - являются важнейшими методами (инструментами), лежащими в основе современной биотехнологии. Методы клеточной инженерии направлены на конструирование клеток нового типа. Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций.

Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов. В результате применения генно-инженерных методов можно получать рекомбинантные (модифицированные) молекулы РНК и ДНК, для чего производится выделение отдельных генов (кодирующих нужный продукт), из клеток какого-либо организма. После проведения определенных манипуляций с этими генами осуществляется их введение в другие организмы (бактерии, дрожжи и млекопитающие), которые, получив новый ген (гены), будут способны синтезировать конечные продукты с измененными, в нужном человеку направлении, свойствами. Иными словами, генная инженерия позволяет получать заданные (желаемые) качества изменяемых или генетически модифицированных организмов или так называемых «трансгенных» растений и животных.

Наибольшее применение генная инженерия нашла в сельском хозяйстве и в медицине.

Люди всегда задумывались над тем, как можно научиться управлять природой, и искали способы получения, например, растений с улучшенными качествами: с высокой урожайностью, более крупными и вкусными плодами или с повышенной холодостойкостью. С давних времен основным методом, который использовался в этих целях, была селекция. Она широко применяется до настоящего времени и направлена на создание новых и улучшение уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для человека признаками и свойствами. Селекция строится на отборе растений (животных) с выраженными благоприятными признаками и дальнейшем скрещивании таких организмов, в то время как генная инженерия позволяет непосредственно вмешиваться в генетический аппарат клетки. Важно отметить, что в ходе традиционной селекции получить гибриды с искомой комбинацией полезных признаков весьма сложно, поскольку к потомству передаются очень большие фрагменты геномов каждого из родителей, в то время как генно-инженерные методы позволяют работать чаще всего с одним или несколькими генами, причем их модификации не затрагивают работу других генов. В результате, не теряя других полезных свойств растения, удается добавить еще один или несколько полезных признаков, что весьма ценно для создания новых сортов и новых форм растений. Стало возможным изменять у растений, например, устойчивость к климату и стрессам, или их чувствительность к насекомым или болезням, распространённым в определённых регионах, к засухе и т.д. Учёные надеются даже получить такие породы деревьев, которые были бы устойчивы к пожарам. Ведутся широкие исследования по улучшению пищевой ценности различных сельскохозяйственных культур, таких как кукуруза, соя, картофель, томаты, горох и др.

Исторически, выделяют «три волны» в создании генно-модифицированных растений:

Вторая волна начало 2000-х годов создание растений с новыми потребительскими свойствами: масличные культуры с повышенным содержанием и измененным составом масел, фрукты и овощи с большим содержанием витаминов, более питательные зерновые и т.д.

В наши дни ученые создают растения «третьей волны», которые в ближайшие 10 лет появятся на рынке: растения-вакцины, растения-биореакторы для производства промышленных продуктов (компонентов для различных видов пластика, красителей, технических масел и т.д.), растения - фабрики лекарств и т.д. Генно-инженерные работы в животноводстве имеют другую задачу. Вполне достижимой целью при современном уровне технологии является создание трансгенных животных с определённым целевым геном. Например, ген какого-нибудь ценного гормона животного (например, гормона роста) искусственно внедряется в бактерию, которая начинает продуцировать его в больших количествах. Еще один пример: трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, фактор VIII, который препятствует кровотечению у больных, страдающих гемофилией, или фермент, тромбокиназу, способствующий рассасыванию тромба в кровеносных сосудах, что актуально для профилактики и терапии тромбофлебита у людей. Трансгенные животные вырабатывают эти белки намного быстрее, а сам способ значительно дешевле традиционного.

В конце 90-х годов XX в. учёные США вплотную подошли к получению сельскохозяйственных животных методом клонирования клеток эмбрионов, хотя это направление нуждается еще в дальнейших серьезных исследованиях. А вот в ксенотрансплантации - пересадке органов от одного вида живых организмов другому, - достигнуты несомненные результаты. Наибольшие успехи получены при использовании свиней, имеющих в генотипе перенесенные гены человека, в качестве доноров различных органов. В этом случае наблюдается минимальный риск отторжения органа. В настоящее время все больше приобретают популярность идеи экологизации и в более широком смысле биологизации всей хозяйственной и производственной деятельности. Под экологизацией, как начальным этапом биологизации, можно понимать сокращение вредных выбросов производства в окружающую среду, создание малоотходных и безотходных промышленных комплексов с замкнутым циклом и т.п.

Биологизацию же следует понимать более широко, как радикальное преобразование производственной деятельности на основе биологических законов биотического круговорота биосферы. Целью подобного преобразования должно быть встраивание всей хозяйственно-производственной деятельности в биотический круговорот. Особенно наглядно эта необходимость видна на феномене стратегической беспомощности химической защиты растений: Дело в том, что в настоящее время нет в мире ни одного пестицида, к которому бы не приспособились вредители растений. Более того, теперь отчетливо выявилась закономерность подобного приспособления: если в 1917 г. появился один вид насекомых, приспособившихся к ДДТ, то в 1980 г. таких видов стало 432. Применяемые пестициды и гербициды крайне вредны не только для всего животного мира, но и для человека. Точно так же в настоящее время становится понятной и стратегическая бесперспективность применения химических удобрений. В этих условиях совершенно естествен переход к биологической защите растений и биоорганической технологии с минимумом

БИОТЕХНОЛОГИЯ БИОТЕХНОЛОГИЯ

(от био..., греч. techne - искусство, мастерство и...логия), использование живых организмов и биол. процессов в производстве. Термин «Б.» получил широкое распространение с сер. 70-х гг. 20 в., хотя такие отрасли Б., как хлебопечение, виноделие, пивоварение, сыроварение, основанные на применении микроорганизмов, известны с незапамятных времён. Совр. Б. характеризуется использованиембиол. методов для борьбы с загрязнением окружающей среды {биологическая очистка сточных вод и т. п.), для зашиты растений от вредителей и болезней, производства ценных биологически активных веществ (антибиотиков, ферментов, гормональных препаратов и др.) для народного х-ва. На основе микробиол. синтеза разработаны пром. методы получения белков, аминокислот, используемых в качестве кормовых добавок. Развитие генетич. и клеточной инженерии позволяет целенаправленно получать ранее недоступные препараты (напр., инсулин, интерферон, гормон роста человека и т. д.), создавать новые полезные виды микроорганизмов, сорта растений, породы животных и т. п. К достижениям новейшей Б. можно отнести также применение иммобилизованных ферментов, получение синтетич. вакцин, использование клеточной технологии в племенном деле на животноводческих комплексах и др. Широкое распространение получили гибридомы и продуцируемые ими моноклональные (одной специфичности) антитела, используемые в качестве уникальных реагентов, диагностич. и лечебных препаратов. Совр. Б. использует достижения биохимии, микробиологии, мол. биологии и генетики, иммунологии, биоорганич. химии; интенсивно развивается в СССР, США, Японии, Франции, ФРГ, ВНР и др. странах.

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

биотехноло́гия

Использование живых организмов и биологических процессов для получения и переработки различных продуктов. Биотехнологические методы издавна применяются в хлебопечении, сыроварении, виноделии и других производствах с участием микроорганизмов (бактерий и микроскопических грибов). С сер. 20 в. микроорганизмы начали использовать для промышленного получения вначале антибиотиков, затем витаминов, аминокислот, ферментов, кормовых белков, бактериальных удобрений и др. Микробиологическая промышленность стала важной отраслью экономики во многих странах.
С возникновением в 1970-х гг. генной и клеточной инженерии, совершенствованием методов культивирования клеток и тканей в развитии биотехнологии начался новый этап. В это время появился и сам термин «биотехнология», употребляемый обычно только по отношению к промышленным технологиям, основанным на применении молекулярно-генетических подходов и методов.
К нач. 21 в. в биотехнологии сложилось несколько направлений. Относительно «старое» – крупнотоннажный микробиологический синтез – обогатилось новыми методами, повышающими его эффективность (получение и отбор продуктивных мутантов, использование генно-инженерных способов и др.). Напр., для увеличения производства незаменимой аминокислоты треонина в клетки продуцента – кишечной палочки – вводят дополнительные гены, ответственные за синтез этой аминокислоты.
Самостоятельным направлением в биотехнологии стало использование иммобилизованных ферментов, т.е. ферментов, закреплённых на каком-либо твёрдом носителе. При этом их эффективность и длительность использования возрастают многократно.
Развитие методов генной инженерии позволило создавать желаемое сочетание генов, клонировать их и вводить этот чужеродный генетический материал в клетки и целые организмы. Так, гены человека, ответственные за синтез определённых белков, встраивали в ДНК бактерий, которые приобретали способность синтезировать этот белок. Таким способом в 1980-х гг. был получен (с помощью кишечной палочки) препарат гормона углеводного обмена – человеческий инсулин. Чужеродные гены встраивают в геномы растительных и животных организмов, получая трансгенные растения и трансгенные животные с нужными человеку свойствами и признаками, напр. высокие урожайность и продуктивность, устойчивость к болезням, высоким и низким температурам, бо́льшая технологичность, упрощающая содержание животных и уборку урожая.
Клеточная инженерия обеспечила возможность получения высокопродуктивных культур растительных клеток, вырабатывающих биологически активные вещества для медицины. Клеточные гибриды между лимфоцитами крови и опухолевыми клетками (гибридомы) используют для получения антител (иммуноглобулинов) одного определённого вида (т.н. моноклональные антитела).
Клонирование , издавна широко применяющееся в растениеводстве и известное как вегетативное размножение, с кон. 20 в. стало использоваться и для размножения с.-х. животных (овечка Долли, полученная в Великобритании в 1997 г.).
Значение биотехнологии велико. Биологически активные вещества (антибиотики, витамины, ферменты и др.), полученные микробиологическим синтезом, находят широкое применение в медицине, сельском хозяйстве, в пищевой, лёгкой и др. отраслях промышленности. С помощью микроорганизмов из растительных отходов получают топливный биогаз (смесь метана и диоксида углерода), осуществляют обезвреживание и разложение промышленных и бытовых отходов, очистку сточных вод, выщелачивание металлов (золота, меди) из горных пород и отвалов. Полагают, что в недалёком будущем биотехнология способна решить основные проблемы человечества – охрану здоровья и окружающей среды, обеспечение пищей и источниками энергии.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Смотреть что такое "БИОТЕХНОЛОГИЯ" в других словарях:

    Биотехнология … Орфографический словарь-справочник

    Современная энциклопедия

    - (от био..., греч. techne умение, мастерство и...логия), комплексная научная дисциплина, исследующая фундаментальные биологические процессы (генетические, биохимические, физиологические) с целью их использования при создании различных технологий … Экологический словарь

    В широком смысле пограничная между биологией и техникой научная дисциплина и сфера практики, изучающая пути и методы изменения окружающей человека природной среды в соответствии с его потребностями. Биотехнология в узком смысле совокупность… … Финансовый словарь

    Биотехнология - БИОТЕХНОЛОГИЯ, использование живых организмов в производстве и переработке различных продуктов. Некоторые биотехнологические процессы с древних времен использовались в хлебопечении, в приготовлении вина и пива, уксуса, сыра, при различных… … Иллюстрированный энциклопедический словарь

    БИОТЕХНОЛОГИЯ, использование биологических процессов для целей медицины, промышленности или производства. Люди с давних пор использовали дрожжи для сбраживания пищевых продуктов и бактерии для производства сыров и кисломолочных напитков. В… … Научно-технический энциклопедический словарь

    Совокупность пром. методов, использующих живые организмы (преимущественно одноклеточные) и биол. процессы для производства пищи, лекарственных средств и других полезных продуктов, а также для решения проблем охраны природы, связанных с очисткой… … Словарь микробиологии

    Биотехнология - (технология живых систем) 1) дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами … Официальная терминология

    Использование живых организмов и биологических процессов в промышленном производстве. Развивается микробиологический синтез ферментов, витаминов, аминокислот, антибиотиков и т. п. Перспективно промышленное получение других биологически активных… … Большой Энциклопедический словарь

    Сущ., кол во синонимов: 1 технология (34) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Книги

  • Биотехнология. В 2-х частях. Часть 2. Учебник и практикум для академического бакалавриата , Назаренко Л.В.. Биотехнология в настоящее время является одним из приоритетных научных направлений, с достижениями в области биотехнологии связывают повышение благосостояния человечества в будущем и…

История взаимоотношений человека и природы — это извечная история попыток человека изменить геном растений и животных в нужную ему сторону. Даже тогда, когда человек не имел ни малейшего понятия о существовании наследственных факторов, интуитивно путём гибридизации и селекции организмов с нужными свойства-ми он изменял наследственность домашних животных и культурных растений.

Все сорта фруктовых деревьев и ягодных культур, овощей, злаков имеют изменённый геном, то есть у них уже не тот генотип, кото-рый имели их дикие предки. Практически все растения, которые люди используют в пищу — полиплоиды. Уже несколько столетий люди используют в хозяйстве межвидовые гибриды, например мулов.

До начала XX ст. селекционерам просто приходилось ждать момента, когда случайная комбинация генов даст организмы с полезными свойствами, отбирать такие организмы и закреп-лять эти комбинации генов в потомстве. В середине XX ст. появились методы, благодаря которым стало возможно искус-ственно получать большое количество случайных мутаций, например с помощью радиоактивного облучения или действия химических мутагенов, чтобы затем отбирать среди них организмы с ценными свойствами. Современные генетические технологии пошли ещё дальше. Они позволяют добиться желаемого результата гораздо быстрее и при этом избежать получения множества промежуточных и побочных лишних форм, так как современная наука и биотехнология способны менять геном целенаправленно. Это удаётся благодаря генно-инженерным методам (рис. 78), с помощью которых можно взять определённые структурные гены из генома одного вида и ввести их в генетический аппарат другого вида, вызвав таким образом в новом организме синтез нужного белка.

Биотехнология — дисциплина, которая изучает возмож-ности использования живых организмов для решения техно-логических задач. Она использует методы и знания генетики, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплин — химической, физической и информационной технологий, робототехники.

Термин биотехнология в 1917 г. предложил венгерский инженер К. Ереки, когда описал процесс производства свини-ны, используя в качестве корма для свиней сахарную свёклу.

Биотехнология — это методология использования биологических объектов для решения технологических задач. Материал с сайта

Современная биотехно-логия позволяет вмешиваться в генетический аппарат и конструиро-вать новые комбинации генов. Так получают генно-модифицированные и трансгенные организмы.

Генетические модификации создают для того, чтобы прибавить организмам полезных свойств.

Трансгенные организмы используют в фармакологии, сельском хозяйстве, промышленности.

Одним из методов генной инженерии является генная терапия , которая позволяет лечить патологии генетического аппарата путём подсадки более здоровых генов.

Биотехнология, ее объекты и основные направления. Биотехнология - это производство необходимых человеку продуктов и биологически активных соединений с помощью живых организмов, культивируемых клеток и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности, а именно - в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна, кож и т.д., т.е. в процессах, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились.

Объектами биотехнологии служат вирусы, бактерии, протисты, дрожжи, а также растения, животные или изолированные клетки и субклеточные структуры (органеллы).

Основными направлениями биотехнологии являются: 1) производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферментов, витаминов, гормонов), лекарственных препаратов (антибиотиков, вакцин, сывороток, высокоспецифичных антител и др.), а также ценных соединений (кормовых добавок, например незаменимых аминокислот, кормовых белков; 2) использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязнений почвы) и защита растений от вредителей и болезней; 3) создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т.п.

Задачи, методы и достижения биотехнологии. Главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной (генетической) и клеточной инженерии.

Генная инженерия - это раздел молекулярной генетики, связанный с целенаправленным созданием новых молекул ДНК, способных реплицироваться в клетке-хозяине и осуществлять контроль за синтезом необходимых метаболитов. Генная инженерия занимается расшифровкой структуры генов, их синтезом и клонированием, вставкой выделенных из клеток живых организмов или вновь синтезированных генов в клетки растений и животных с целью направленного изменения их наследственных свойств.

Для осуществления переноса генов (или трансгенеза) от одного вида организмов в другой, часто очень далекий по своему происхождению, необходимо выполнить несколько сложных операций:

    выделение генов (отдельных фрагментов ДНК) из клеток бактерий, растений или животных. В отдельных случаях эту операцию заменяют искусственным син тезом нужных генов;

    соединение (сшивание) отдельных фрагментов ДНК любого происхождения в единую молекулу в составе плазмиды;

    введение гибридной плазмидной ДНК, содержащей нужный ген, в клетки хозяина;

    копирование (клонирование) этого гена в новом хозяине с обеспечением его работы (рис. 8.11).

Клонированный ген путем микроинъекции вводят в яйцеклетку млекопитающего или протопласт растения (изолированная клетка, лишенная клеточной стенки) и выращивают из них целое животное или растение. Растения и животные, геном которых изменен путем генно-инженерных операций, получили названиетрансгенных растений и трансгенных животных.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов.

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека - сахарного диабета, некоторых видов злокачественных опухолей и карликовости соответственно.

Клеточная инженерия - метод, позволяющий конструировать клетки нового типа. Метод заключается в культивировании изолированных клеток и тканей на искусственной питательной среде в регулируемых условиях, что стало возможным благодаря способности растительных клеток в результате регенерации формировать целое растение из единичной клетки. Условия регенерации разработаны для многих культурных растений, таких как картофель, пшеница, ячмень, кукуруза, томат и др. Работа с этими объектами делает возможным использование в селекции нетрадиционных методов клеточной инженерии, таких как соматическая гибридизация, гаплоидия, клеточная селекция, преодоление нескрещиваемости в культуре и др.

Соматическая гибридизация - это слияние двух различных клеток в культуре тканей. Сливаться могут разные виды клеток одного организма и клетки разных, иногда очень далеких видов, например, мыши и крысы, кошки и собаки, человека и мыши.

Культивирование клеток растений стало возможным, когда научились с помощью ферментов избавляться от толстой клеточной стенки и получать изолированный протопласт. Протопласты можно культивировать так же, как и клетки животных, обеспечивать слияние их с протопластами других видов растений и получать в соответствующих условиях новые гибридные растения.

Важное направление клеточной инженерии связано с ранними стадиями эмбриогенеза. Например, оплодотворение яйцеклеток в пробирке уже сейчас позволяет преодолевать некоторые распространенные формы бесплодия у человека. У сельскохозяйственных животных с помощью инъекции гормонов удается получить от одной коровы-рекордистки десятки яйцеклеток, оплодотворить их в пробирке спермой породистого быка, а затем имплантировать в матку других коров и таким путем получить от одного ценного экземпляра в 10 раз большее потомства, чем это было бы возможно обычным путем.

Культуру растительных клеток выгодно использовать для быстрого размножения медленно растущих растений - женьшеня, маслинной пальмы, малины, персика и др. Так, при обычном разведении куст малины может дать не более 50 отростков в год, в то время как с помощью культуры клеток можно получить более 50 тыс. растений. При таком разведении иногда возникают растения более продуктивные, чем исходный сорт.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. Внедрение нужных генов в клетки растений, животных и человека позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем - непосредственно белки и незаменимые аминокислоты, употребляемые в пищу. Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород - самое экологически чистое топливо будущего, электроэнергию, превращать в аммиак атмосферный азот при обычных условиях.

Биотехнология - это производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов. Основными направлениями биотехнологии являются: производство биологически активных соединений (витаминов, гормонов, ферментов), лекарственных препаратов и других ценных соединений, разработка и использование биологических методов борьбы с загрязнением окружающей среды, создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т.д. Решению этих сложных задач способствуют методы генной и клеточной инженерии.

Биотехнологии (Βιοτεχνολογία, от греч. Bios — жизнь, techne — искусство, мастерство и logos — слово, учение) — использование живых организмов и биологических процессов в производстве. Биотехнология — междисциплинарная область, возникшая на стыке биологических, химических и технических наук. С развитием биотехнологии связывают решение глобальных проблем человечества — ликвидацию нехватки продовольствия, энергии, минеральных ресурсов, улучшение состояния здравоохранения и качества окружающей среды.

Метод

Положительным фактором в применении биологического метода является его экологичность. Биологические средства можно использовать без ограничения кратности применения, в то время как количество обработок растений химическими пестицидами строго регламентирована.

Биологическая защита растений основывается на системном подходе и комплексной реализации двух основных направлений: сохранение и содействие деятельности естественных популяций полезных видов (энтомофагов, микроорганизмов), самозащиты культурных растений в агробиоценозах и обновления агробиоценозов полезными видами, которых не хватает или которые отсутствуют. Принципиальным отличием биологического метода защиты растений от любого другого является использование именно первого направления, осуществляют, применяя биологические препараты, способами сезонной колонизации, интродукции и акклиматизации зоофаги и микроорганизмов. Размножению и эффективности деятельности полезных видов способствуют агробиотехнични меры, и некоторые способы обработки почвы с помощью которых можно создавать благоприятные условия для жизнедеятельности зоофаги.

Выращивание устойчивых к вредным организмам сортов культурных растений способствует формированию маложиттездатних популяций вредителей.

Каждый из основных средств биологического метода (применение зоофаги, полезных в защите растений микроорганизмами) имеет свои особенности и эффективен в соответствующих условиях. Эти средства не исключают, а дополняют друг друга. Сейчас особое внимание уделяется поиску путей совместного применения биологической защиты с другими методами в интегрированных системах защиты растений от вредных организмов. Основной задачей этого метода является изучение условий, которые определяют эффективность естественных врагов вредных организмов и разработка способов регулирования их количества и взаимоотношений с популяциями вредных организмов.

Интродукция и акклиматизация применяются против карантинных вредителей, которые имеют ограниченное распространение в стране.

Естественные враги ограничивают размножение вредителя на его родине, а в новом географическом районе они отсутствуют. Эффективных зоофаги и микроорганизмов для завоза и акклиматизации находят на родине вредного организма и переселяют в новые районы. Наилучшие результаты получают при завозе узкоспециализированных видов, которые приспособлены к существованию за счет одного вредителя, болезни, сорняков. Внутришньоареальне переселения заключается в переселении эффективных, чаще специализированных, естественных врагов из старых очагов, где численность вредных организмов снижается, в новые в других частях ареала вида, где эти враги отсутствуют или еще не накопились.

Микроорганизмы, которые повреждают вредные виды, для защиты растений применяются в форме биологических препаратов. Большинство биологических бактериальных препаратов создано на основе кристалоутворюючих бактерий группы Bacillus thuringiensis Berl., Которые образуют споры и кристаллы, способные растворяться в кишечнике насекомых, куда они попадают с кормом.

Грибные препараты содержат споры энтомопатогенных грибов, принадлежащих к несовершенным.

Вирусные биологические препараты (Вериных) изготавливаются на основе вирусов полиэдроза и гранулезы, которые чаще всего поражают чешуекрылых.

В живых системах на всех уровнях организации распространенным способом передачи информации является химическая коммуникация. В последнее время большое внимание уделяется разработке и применению биологически активных веществ, которые обеспечивают взаимоотношения между живыми организмами в биоценозах, их рост и развитие. Основной группой биологически активных веществ является феромоны. Феромоны — химические вещества, которые производят и выделяют в окружающую среду насекомые. Эти вещества вызывают соответствующие поведенческие или физиологические реакции. Существуют различные группы феромонов — половые, агрегацию, следовые т. Наибольшее распространение в практике защиты растений приобрели половые феромоны, которые чаще всего выделяют самки для привлечения самцов. Наиболее изученными являются феромоны чешуекрылых, жесткокрылых, клопов, сетчатокрылых, термитов. На основе определения структуры природных феромонов насекомых созданы их синтетические аналоги. Половые феромоны используются для обнаружения и определения зоны распространения вредителей, для сигнализации сроков применения защитных мер, определение плотности популяций вредителей, а также для защиты посевов путем массового отлова самцов («самцевого вакуума») и дезориентации, привлечения самцов при химической стерилизации.

Способ дезориентации насекомых предусматривает насыщение площади высокими концентрациями синтетического феромона и нарушения феромонных коммуникации между самцами и самками. В результате неспаренных самки откладывают неоплодотворенные яйца, что и приводит к снижению численности вида. Установлено, что процессы метаморфозу, линьки, размножения и диапаузы насекомых регулируют гормоны. Наиболее изученными являются ювенильный (личиночный), экдизон (линочний) и мозговой. Гормоны были синтезированы и получены как химические соединения, по структуре отличаются от природных, но имитируют их биологическую активность — выполняют роль регуляторов роста и развития насекомых. В защите растений практического применения приобрели ингибиторы синтеза хитин и ювеноидив. Гормональные препараты по своему действию значительно отличаются от традиционных инсектицидов. Они не токсичны, но обусловливают нарушения эмбрионального развития, метаморфозу, вызывают стерилизацию. Ингибиторы хитина нарушают формирование кутикулы во время линьки. Ювеноидив вызывают гибель при завершении личиночного или лялечкового развития, являются ингибиторами синтеза хитин при очередной Линци.

Генетический метод борьбы с вредными организмами был разработан и предложен А. С. Серебровским (1938, 1950). Этот метод предусматривает насыщение природной популяции вредителя генетически неполноценными особями того же вида. Самки природной популяции, спариваясь с такими особями, откладывают нежизнеспособные яйца, не дают потомства, происходит самоуничтожения вредителя. Генетический метод осуществляется лучевой и химической стерилизацией. Лучевая стерилизация предусматривает массовое разведение вредителей, облучения их (гамма-лучами, рентгеновскими лучами) и следующий выпуск в плодовые насаждения, посевы сельскохозяйственных культур. В облученных особях возникают повреждения хромосомного аппарата. При химической стерилизации стерилизаторами используются химические вещества, с алкилючих сообщений, антиметаболитов и антибиотиков. Первые вызывают половую стерильность самок и самцов, антиметаболиты обусловливают стерильность самок. Генетический метод борьбы был применен в 1954 году по сравнению с серой мясной мухи на острове Кюрасао, которая наносит значительный ущерб животноводству. Выпуск стерилизованных особей был успешным. Генетическом метода борьбы присуща избирательность, его применение не связано с негативным воздействием на окружающую среду и не способствует явке устойчивости к факторам стерилизации.

История биотехнологии

С древнейших времен человек использовал биотехнологические процессы при хлебопечении, приготовлении кисломолочных продуктов, в виноделии и т.д., но только благодаря работам Луи Пастера в середине 19 века, доказали связь процессов брожения с деятельностью микроорганизмов, традиционная биотехнология получила научную основу.

В 40-50-е годы 20 века, когда был осуществлен биосинтез пенициллинов методами ферментации, началась эра антибиотиков, давшая толчок развитию микробиологического синтеза и созданию микробиологической промышленности.

В 60-70-е годы 20 века начала бурно развиваться клеточная инженерия.

С созданием 1972 группой П. Берга в США первой гибридной молекулы ДНК in vitro формально связано рождение генетической инженерии, открыла путь к сознательной изменения генетической структуры организмов таким образом, чтобы эти организмы могли производить необходимые человеку продукты и осуществлять необходимые процессы. Эти два направления определили облик новой биотехнологии, имеет мало общего с той примитивной биотехнологией, что человек использовал в течение тысячелетий. Показательно, что в 1970-е годы получил распространение и самый срок биотехнология. С этого времени биотехнология неразрывно связана с молекулярной и клеточной биологией, молекулярной генетикой, биохимией и биоорганической химией. За короткий период своего развития (25-30 лет) современная биотехнология не только достигла существенных успехов, но и продемонстрировала неограниченные возможности использования организмов и биологических процессов в различных отраслях производства и народного хозяйства.

Биотехнология как наука

Биотехнология — это комплекс фундаментальных и прикладных наук, технических средств, направленных на получение и использование клеток микроорганизмов, животных и растений, а также продуктов их жизнедеятельности: ферментов, аминокислот, витаминов, антибиотиков и др.

Биотехнология, которая включает промышленную микробиологию, базируется на использовании знаний и методов биохимии, микробиологии, генетики и химической технологии, что позволяет получать пользу в технологических процессах из свойств микроорганизмов и клеточных культур. Современные биотехнологические процессы основаны на методах рекомбинантных ДНК, а также на использовании иммобилизованных ферментов, клеток и клеточных органелл.

Основные направления исследований:

  • Разработка научных основ создания новых биотехнологий с помощью методов молекулярной биологии, генетической и клеточной инженерии.
  • Получение и использование биомассы микроорганизмов и продуктов микробиологического синтеза.
  • Изучение физико-химических и биохимических основ биотехнологических процессов.
  • Использование вирусов для создания новых биотехнологий.

Применение

Биотехнология применяется вокруг нас во многих предметах ежедневного потребления — от одежды, которую мы носим, ​​к сыру, который мы потребляем. На протяжении веков фермеры, пекари и пивовары использовали традиционные технологии для изменения и модификации растений и продуктов питания — пшеница может служить древнейшим примером, а нектарин — одним из последних. Сегодня биотехнология использует современные научные методы, которые позволяют улучшить или модифицировать растения, животные, микроорганизмы с большей точностью и предсказуемостью.

Потребители должны иметь выбор из более широкого перечня безопасных продуктов. Биотехнология может предоставить потребителям возможность такого выбора — не только в сельском хозяйстве, но и в медицине и топливных ресурсах.

Преимущества биотехнологий

Биотехнология предлагает огромные потенциальные преимущества. Развитые страны и развивающиеся страны, должны быть прямо заинтересованы в поддержке дальнейших исследований, направленных на то, чтобы биотехнология могла полностью реализовать свой потенциал.

Биотехнология помогает окружающей среде. Позволяя фермерам уменьшить количество пестицидов и гербицидов, биотехнологические продукты первого поколения привели к уменьшению их использования в сельскохозяйственной практике, а будущие продукты биотехнологий должны принести еще больше преимуществ. Уменьшение пестицидной и гербицидного нагрузки означает меньший риск токсического загрязнения почв и грунтовых вод. Кроме того, гербициды, применяемые в сочетании с генетически модифицированными растениями, часто более безопасны для окружающей среды, чем гербициды предыдущего поколения, на смену которым они приходят. Культуры, выведенные методами биоинженерии, также способствуют широкому применению безотвальной обработки почвы, что приводит к уменьшению потерь плодородия почвы.

Огромный потенциал биотехнология имеет в борьбе с голодом. Развитие биотехнологий предлагает значительные потенциальные преимущества для развивающихся стран, где более миллиарда жителей планеты живут в бедности и страдают от хронического голода. Из-за роста урожайности и вывода культур, устойчивых к болезням и засухе, биотехнология может уменьшить недостаток пищи для населения планеты, которое по состоянию к 2025 году составит более 8000000000 человек, что на 30% больше чем сегодня. Ученые создают сельскохозяйственные культуры с новыми свойствами, которые помогают им выживать в неблагоприятных условиях засухи и наводнений.

Биотехнология помогает бороться с болезнями. Развивая и улучшая медицину, она дает новые инструменты в борьбе с ними. Биотехнология дала медицинские методы лечения кардиологических болезней, склероза, гемофилии, гепатита, и СПИДа. Сейчас создаются биотехнологические продукты питания, которые сделают дешевле и доступнее для беднейшей части населения планеты жизненно необходимые витамины и вакцины.

Предостережения относительно применения

Объемы изъятия биопродукции из биосферы достигли 70%, а живая материя функционирует на оптимальном уровне, когда по продукции биосферы изымается не более 15%. Экосистемы и биосфера в целом все больше теряют способность к саморегуляции и самоподдержки. В конце концов это придает круговорота веществ на земном шаре качественно нового и непредсказуемого характера. Стабильность функционирования биосферы оказалась под угрозой. Загрязнением и деградацией охвачены все геосферы Земли. Воздух, вода и почва стали терять свои основные природные свойства.

Биотехнология в области здравоохранения

Биотехнология может принести значительные преимущества в сферу здравоохранения. Увеличивая питательную ценность пищи, биотехнология может использоваться для улучшения качества питания. Например, сейчас создаются сорта риса и кукурузы с повышенным содержанием белков. В будущем потребители смогут воспользоваться маслом с уменьшенным содержанием жиров, которая будет получено из генетически модифицированных кукурузы, сои, рапса. Кроме того, генетическая инженерия может использоваться для производства продуктов питания с повышенным уровнем витамина А, который поможет решить проблему слепоты в развивающихся странах. Генетическая инженерия также предлагает другие преимущества для здоровья, ведь сегодня созданы методы, которые позволяют удалять определенные аллергенные белки из продуктов питания или избегать их преждевременной порчи.

Биотехнология в медицине

В медицине биотехнологические приемы и методы играют главную роль при создании новых биологически активных веществ и лекарственных препаратов, предназначенных для ранней диагностики и лечения различных заболеваний. Антибиотики — самый класс фармацевтических соединений, получаемых микробиологическим синтезом. Создан генно-инженерные штаммы кишечной палочки, дрожжей, культивируемых клеток млекопитающих и насекомых, используемые для получения гормона роста, инсулина и интерферона человека, различных ферментов и противовирусных вакцин. Изменяя нуклеотидную последовательность в генах, кодирующих соответствующие белки, оптимизируют структуру ферментов, гормонов и антигенов (так называемая белковая инженерия). Важнейшим открытием стала разработанная 1975 Г. Келером и С. Мильштейном техника использования гибридом для получения моноклональных антител желаемой специфичности. Моноклональные антитела используют как уникальные реагенты, для диагностики и лечения различных заболеваний.

Биотехнологии в сельском хозяйстве

Биотехнологии в сельском хозяйстве облегчает традиционные методы селекции растений и животных и разрабатывает новые технологии, позволяющие повысить эффективность сельского хозяйства. Во многих странах методами генетической и клеточной инженерии созданы высокопроизводительные и устойчивые к вредителям, болезням, гербицидам сорта сельскохозяйственных растений. Разработанная техника оздоровления растений от накопленных инфекций, что особенно важно для культур, которые размножаются вегетативно (картофель и др.). В качестве одной из важнейших проблем биотехнологии во всем мире, исследования возможности управления процессом азотфиксации, возможность введения генов азотфиксации в геном полезных растений, а также процессом фотосинтеза. Исследуется улучшения аминокислотного состава растительных белков. Разрабатываются новые регуляторы роста растений, микробиологические средства защиты растений от болезней и вредителей, бактериальные удобрения. Генно-инженерные вакцины, сыворотки, моноклональные антитела используют для профилактики, диагностики и терапии основных болезней в животноводстве. В создании эффективных технологий племенного дела применяют генно-инженерный гормон роста, а также технику трансплантации и микроманипуляций на эмбрионах животных. Для повышения продуктивности животных используют кормовой белок, полученный микробиологическим синтезом.

Биотехнология в производстве

Биотехнологические процессы с использованием микроорганизмов и ферментов на современном техническом уровне широко применяются в пищевой промышленности. Промышленное выращивание микроорганизмов, растительных и животных клеток используют для получения многих ценных соединений — ферментов, гормонов, аминокислот, витаминов, антибиотиков, метанола, органических кислот (уксусной, лимонной, молочной) и др. С помощью микроорганизмов осуществляют биотрансформацию одних органических соединений в другие (например, сорбита во фруктозу). Широкое применение в различных производствах получили иммобилизованные ферменты. Для выделения биологически активных веществ из сложных смесей используют моноклональные антитела. А. С. Спириным в 1985-1988 был разработан принципы бесклеточного синтеза белка, когда вместо клеток применяются специальные биореакторы, содержащие необходимый набор очищенных клеточных компонентов. Этот метод позволяет получать разные типы белков и может быть эффективным в производстве. Многие промышленных технологий заменяются технологиями, используют ферменты и микроорганизмы. Такие биотехнологические методы переработки сельскохозяйственных, промышленных и бытовых отходов, очистки и использования сточных вод для получения биогаза и удобрений. В ряде стран с помощью микроорганизмов получают этиловый спирт, используют в качестве топлива для автомобилей (в Бразилии, где топливный спирт широко применяется, его получают из сахарного тростника и других растений). На способности различных бактерий переносить металлы в растворимые соединения или накапливать их в себе основанный извлечение многих металлов из бедных руд или сточных вод.

Бионанотехнологии

Разработка биологических материалов и специальных процессов, где используются наноматериалы или нанотехнологии. Включая молекулярные моторы, биоматериалы, технологию манипуляции с отдельными молекулами, технологию биочипов.



Похожие статьи
 
Категории