Какие цифры относятся к натуральным. Числа

29.09.2019

Математика выделилась из общей философии примерно в шестом веке до н. э., и с этого момента началось ее победное шествие по миру. Каждый этап развития вносил что-то новое - элементарный счет эволюционировал, преображался в дифференциальное и интегральное исчисление, сменялись века, формулы становились все запутаннее, и настал тот момент, когда «началась самая сложная математика - из нее исчезли все числа». Но что же лежало в основе?

Начало начал

Натуральные числа появились наравне с первыми математическими операциями. Раз корешок, два корешок, три корешок… Появились они благодаря индийским ученым, которые вывели первую позиционную

Слово «позиционность» означает, что расположение каждой цифры в числе строго определено и соответствует своему разряду. Например, числа 784 и 487 - цифры одни и те же, но числа не являются равносильными, так как первое включает в себя 7 сотен, тогда как второе - только 4. Нововведение индийцев подхватили арабы, которые довели числа до того вида, который мы знаем сейчас.

В древности числам придавалось мистическое значение, Пифагор полагал, что число лежит в основе сотворения мира наравне с основными стихиями - огнем, водой, землей, воздухом. Если рассматривать все лишь с математической стороны, то что такое натуральное число? Поле натуральных чисел обозначается как N и представляет собой бесконечный ряд из чисел, которые являются целыми и положительными: 1, 2, 3, … + ∞. Ноль исключается. Используется в основном для подсчета предметов и указания порядка.

Что такое в математике? Аксиомы Пеано

Поле N является базовым, на которое опирается элементарная математика. С течением времени выделяли поля целых, рациональных,

Работы итальянского математика Джузеппе Пеано сделали возможной дальнейшую структуризацию арифметики, добились ее формальности и подготовили почву для дальнейших выводов, которые выходили за рамки области поля N.

Что такое натуральное число, было выяснено ранее простым языком, ниже будет рассмотрено математическое определение на базе аксиом Пеано.

  • Единица считается натуральным числом.
  • Число, которое идет за натуральным числом, является натуральным.
  • Перед единицей нет никакого натурального числа.
  • Если число b следует как за числом c, так и за числом d, то c=d.
  • Аксиома индукции, которая в свою очередь показывает, что такое натуральное число: если некоторое утверждение, которое зависит от параметра, верно для числа 1, то положим, что оно работает и для числа n из поля натуральных чисел N. Тогда утверждение верно и для n=1 из поля натуральных чисел N.

Основные операции для поля натуральных чисел

Так как поле N стало первым для математических расчетов, то именно к нему относятся как области определения, так и области значений ряда операций ниже. Они бывают замкнутыми и нет. Основным различием является то, что замкнутые операции гарантированно оставляют результат в рамках множества N вне зависимости от того, какие числа задействованы. Достаточно того, что они натуральные. Исход остальных численных взаимодействий уже не столь однозначен и напрямую зависит от того, что за числа участвуют в выражении, так как он может противоречить основному определению. Итак, замкнутые операции:

  • сложение - x + y = z, где x, y, z включены в поле N;
  • умножение - x * y = z, где x, y, z включены в поле N;
  • возведение в степень - x y , где x, y включены в поле N.

Остальные операции, итог которых может не существовать в контексте определения "что такое натуральное число", следующие:


Свойства чисел, принадлежащих полю N

Все дальнейшие математические рассуждения будут основываться на следующих свойствах, самых тривиальных, но от этого не менее важных.

  • Переместительное свойство сложения - x + y = y + x, где числа x, y включены в поле N. Или всем известное "от перемены мест слагаемых сумма не меняется".
  • Переместительное свойство умножения - x * y = y * x, где числа x, y включены в поле N.
  • Сочетательное свойство сложения - (x + y) + z = x + (y + z), где x, y, z включены в поле N.
  • Сочетательное свойство умножения - (x * y) * z = x * (y * z), где числа x, y, z включены в поле N.
  • распределительное свойство - x (y + z) = x * y + x * z, где числа x, y, z включены в поле N.

Таблица Пифагора

Одним из первых шагов в познании школьниками всей структуры элементарной математики после того, как они уяснили для себя, какие числа называются натуральными, является таблица Пифагора. Ее можно рассматривать не только с точки зрения науки, но и как ценнейший научный памятник.

Данная таблица умножения претерпела с течением времени ряд изменений: из нее убрали ноль, а числа от 1 до 10 обозначают сами себя, без учета порядков (сотни, тысячи...). Она представляет собой таблицу, в которой заглавия строк и столбцов - числа, а содержимое ячеек их пересечения равно их же произведению.

В практике обучения последних десятилетий наблюдалась необходимость заучивания таблицы Пифагора "по порядку", то есть сначала шло зазубривание. Умножение на 1 исключалось, так как результат был равен 1 или большему множителю. Между тем в таблице невооруженным взглядом можно заметить закономерность: произведение чисел растет на один шаг, который равен заглавию строки. Таким образом, второй множитель показывает нам, сколько раз нужно взять первый, дабы получить искомое произведение. Данная система не в пример удобнее той, что практиковалась в средние века: даже понимая, что такое натуральное число и насколько оно тривиально, люди умудрялись осложнять себе повседневный счет, пользуясь системой, которая базировалась на степенях двойки.

Подмножество как колыбель математики

На данный момент поле натуральных чисел N рассматривается лишь как одно из подмножеств комплексных чисел, но это не делает их менее ценными в науке. Натуральное число - первое, что познает ребенок, изучая себя и окружающий мир. Раз пальчик, два пальчик... Благодаря ему у человека формируется логическое мышление, а также умение определять причину и выводить следствие, подготавливая почву для больших открытий.

Натуральные числа

Натуральные числа – это те числа, которые применяются для подсчета различных предметов или для того, чтобы указать порядковый номер какого-либо предмета среди себе подобных или однородных.

Записывать натуральные числа можно с помощью первых десяти цифр:

Для записи простых натуральных чисел принято использовать позиционную десятичную систему исчисления, где значение любой цифры определяют ее местом в записи.

Натуральные числа – это простейшие числа, часто используемые нами в повседневной жизни. С помощью этих чисел мы ведем подсчеты, считаем предметы, определяем их количество, порядок и номер.

С натуральными числами мы начинаем знакомиться с самого раннего детства, поэтому они для каждого из нас являются привычными и естественными.

Общее представление о натуральных числах

Натуральные числа предназначены для несения информации о количестве предметов, их порядковом номере и множестве предметов.

Человек использует натуральные числа, так как они ему доступны как на уровне восприятия, так и на уровне воспроизведения. При озвучивании любого натурального числа, мы с вами легко его улавливаем на слух, а изобразив натуральное число – мы его видим.

Все натуральные числа располагаются в порядке возрастания и образуют числовой ряд, начинающийся с наименьшего натурального числа, которым является единица.

Если мы определились с наименьшим натуральным числом, то с наибольшим будет посложнее, так как такого числа не существует потому, что ряд натуральных чисел является бесконечным.

При прибавлении к натуральному числу единицы, в итоге мы получим число, которое идет за данным числом.

Такая цифра, как 0 не есть натуральным числом, а только служит для обозначения числа «ноль» и значит «ни одного». 0 означает отсутствие в десятичной записи чисел единиц данного ряда.

Все натуральные числа обозначаются заглавной латинской буквой N.

Историческая справка обозначения натуральных чисел

В древние времена человек еще не знал, что такое число и как можно посчитать количество предметов. Но уже тогда возникла необходимость в счете, и человек придумал, как можно сосчитать пойманную рыбу, собранные ягоды и т.д.

Немного позже, древний человек пришел к тому, что нужное ему количество проще записать. Для этих целей первобытные люди стали использовать камешки, а потом палочки, которые сбереглись в римских цифрах.

Следующим моментом развития системы исчисления стало использование в обозначениях некоторых чисел букв алфавита.

К первым системам исчисления относится десятичная индийская система и шестидесятеричная вавилонская.

Современная система исчисления, хоть и называется арабской, но, по сути, представляет один из вариантов индийской. Правда в ее системе исчисления отсутствует цифра ноль, но арабы ее добавили, и система приобрела нынешний вид.

Десятичная система исчисления



С натуральными числами мы уже познакомись и научились записывать их с помощью десяти цифр. Также вам уже известно, что запись чисел с использованием знаков, называется системой исчисления.

Значение цифры в записи числа зависит от ее позиции и называется позиционным. То есть, при методах записи натуральных чисел, мы используем позиционную систему исчисления.

Данная система основывается на разрядности и десятичности. В десятичной системе исчисления основой для ее построения будут цифры от 0 до 9.

Особое место в такой системе отводится числу 10, так как, в основном счет ведется десятками.

Таблица классов и разрядов:



Так, например, 10 единиц объединены в десятки, далее в сотни, тысячи и тому подобное. Поэтому число 10 является основанием системы исчисления и носит название десятичной системы исчисления.

Натуральные числа и их свойства

Для счёта предметов в жизни используют натуральные числа. В записи любого натурального числа используются цифры $0,1,2,3,4,5,6,7,8,9$

Последовательность натуральных чисел, каждое следующее число в котором на $1$ больше предыдущего, образует натуральный ряд , который начинается с единицы (т.к. единица- самое маленькое натуральное число) и не имеет наибольшего значения, т.е. бесконечен.

Нуль не относят к натуральным числам.

Свойства отношения следования

Все свойства натуральных чисел и операций над ними следуют из четырех свойств отношений следования, которые были сформулированы в $1891$ г. Д.Пеано:

    Единица- натуральное число, которое не следует ни за каким натуральным числом.

    За каждым натуральным числом следует одно и только одно число

    Каждое натуральное число, отличное от $1$, следует за одним и только одним натуральным числом

    Подмножество натуральных чисел, содержащее число $1$, а вместе с каждым числом и следующее за ним число, содержит все натуральные числа.

Если запись натурального числа состоит из одной цифры его называют однозначным (например, $2,6.9$ и т.д.), если запись состоит из двух цифр-двузначным(например,$12,18,45$) и т.д. по аналогии. Двузначные, трехзначные, четырехзначные и т.д. числа называют в математике многозначными.

Свойство сложения натуральных чисел

    Переместительное свойство: $a+b=b+a$

    Сумма не изменяется при перестановке слагаемых

    Сочетательное свойство: $a+ (b+c) =(a+b) +c$

    Чтобы прибавить к числу сумму двух чисел, можно сначала прибавить первое слагаемое, а потом, к полученной сумме- второе слагаемое

    От прибавления нуля число не измениться и если прибавить к нулю какое- нибудь число, то получится прибавленное число.

Свойства вычитания

    Свойство вычитания суммы из числа $a-(b+c) =a-b-c$ если $b+c ≤ a$

    Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а затем из полученной разности- второе слагаемое

    Свойство вычитания числа из суммы $(a+b) -c=a+(b-c)$, если $c ≤ b$

    Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить другое слагаемое

    Если из числа вычесть нуль, то число не изменится

    Если из числа вычесть его само, то получится нуль

Свойства умножения

    Переместительное $a\cdot b=b\cdot a$

    Произведение двух чисел не изменяется при перестановке множителей

    Сочетательное $a\cdot (b\cdot c)=(a\cdot b)\cdot c$

    Чтобы умножить число на произведение двух чисел,можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель

    При умножении на единицу произведение не изменяется $m\cdot 1=m$

    При умножении на нуль произведение равно нулю

    Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо

Свойства умножения относительно сложения и вычитания

    Распределительное свойство умножения относительно сложения

    $(a+b)\cdot c=ac+bc$

    Для того чтобы умножить сумму на число,можно умножить на это число каждое слагаемое и сложить получившиеся произведения

    Например, $5(x+y)=5x+5y$

    Распределительное свойство умножение относительно вычитания

    $(a-b)\cdot c=ac-bc$

    Для того,чтобы умножить разность на число,множно умножить на это число уменьшаемое и вычитаемое и из первого произведения вычесть второе

    Например, $5(x-y)=5x-5y$

Сравнение натуральных чисел

    Для любых натуральных чисел $a$ и $b$ может выполняться только одно из трех соотношений $a=b$, $a

    Меньшим считается число, которое в натуральном ряду появляется раньше, а большим, которое появляется позже. Нуль меньше любого натурального числа.

    Пример 1

    Сравнить числа $a$ и $555$, если известно, что существует некоторое число $b$, причем выполняются соотношения: $a

    Решение : На основании указанного свойства,т.к. по условию $a

    в любом подмножестве натуральных чисел, содержащем хотя бы одно число, есть наименьшее число

    Подмножеством в математике называют часть множества. Говорят, что множество является подмножеством другого, если каждый элемент подмножества является одновременно и элементом большего множества

Часто для сравнения чисел находят их разность и сравнивают ее с нулем. Если разность больше $0$, но первое число больше второго, если разность меньше $0$, то первое число меньше второго.

Округление натуральных чисел

Когда полная точность не нужна, или не возможна,числа округляют,т.е заменяют их близкими числами с нулями на конце.

Натуральные числа округляют до десятков, сотен,тысяч и т.д

При округлеии числа до десятков его заменяют ближайшим числом,состоящим из целых десятков; у такого числа в разряде единиц стоит цифра $0$

При округлеии числа до сотен его заменяют ближайшим числом,состоящим из целых сотен; у такого числа в разряде десятков и единиц должна стоять цифра $0$. И т.д

Числа,до которых округляют данное называют приближенным значением числа с точностью до указанных разрядов.Например если округлять число $564$ до десятков то получим, что округлить его можно с недостатком и получить $560$, или с избытком и получить $570$.

Правило округления натуральных чисел

    Если справа от разряда, до которого округляют число, стоит цифра $5$ или цифра,большая $5$, то к цифре этого разряда прибавляют $1$; в противном случае эту цифру оставляют без изменения

    Все цифры, расположенные правее разряда, до которого округляют число,заменяют нулями

Натуральные числа – натуральные числа это числа которые используются для счета предметов. Множество всех натуральных чисел иногда называют натуральным рядом: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, и т.д.

Для записи натуральных чисел используют десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С помощью них, можно записать любое натуральное число. Такая запись чисел называется десятичной.

Натуральный ряд чисел можно продолжать бесконечно. Нет такого числа, которые было бы последнее, потому что к последнему числу всегда можно прибавить единицу и получится число, уже большее искомого. В таком случае говорят, что в натуральном ряду нет наибольшего числа.

Разряды натуральных чисел

В записи любого числа с помощью цифр, место на котором цифра стоит в числе имеет решающее значение. Например, цифра 3 означает: 3 единицы, если она будет стоять в числе на последнем месте; 3 десятка, если она будет стоять в числе на предпоследнем месте; 4 сотни, если она будет стоять в числе на третьем месте с конца.

Последняя цифра означает разряд единиц, предпоследняя – разряд десятков, 3 с конца –разряд сотен.

Однозначные и многозначные цифры

Если в каком-либо разряде числа стоит цифра 0, это означает, что в данном разряде нет единиц.

С помощью цифры 0 обозначается число ноль. Ноль это «ни одного».

Нуль не относится к натуральным числам. Хотя некоторые математики считаю иначе.

Если число состоит из одной цифры его называют однозначным, из двух – двузначным, из трех – трехзначными, и т.д.

Числа которые не являются однозначными еще называют многозначными.

Классы из цифр для чтения больших натуральных чисел

Для чтения больших натуральных чисел, число разбивают на группы из трех цифр, начиная с правого края. Эти группы называются классы.

Первые три цифры с правого края составляют класс единиц, следующие три – класс тысяч, следующие три – класс миллионов.

Миллион – тысяча тысяч, для записи используют сокращение млн. 1 млн. = 1 000 000.

Миллиард = это тысяча миллионов. Для записи используют сокращение млрд. 1 млрд. = 1 000 000 000.

Пример записи и чтения

Это число имеет в классе миллиардов 15 единиц, 389 единиц в классе миллионов, нуль единиц в классе тысяч и 286 единиц в ласе единиц.

Данное число читается так: 15 миллиардов 389 миллионов 286.

Читают числа слева направо. По очереди называют число единиц каждого класса и потом добавляют название класса.



Похожие статьи
 
Категории