Определяется магнитное поле. Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора но и его модуляМодуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действую

22.09.2019

Под термином "магнитное поле" принято подразумевать определенное энергетическое пространство, в котором проявляются силы магнитного взаимодействия. Они влияют на:

    отдельные вещества: ферримагнетики (металлы - преимущественно чугуны, железо и сплавы из них) и их класс ферритов вне зависимости от состояния;

    движущиеся заряды электричества.

Физические тела, обладающие суммарным магнитным моментом электронов или других частиц, называют постоянными магнитами . Их взаимодействие представлено на картинке силовыми магнитными линиями .


Они образовались после поднесения постоянного магнита к обратной стороне картонного листа с ровным слоем железных опилок. Картинка демонстрирует четкую маркировку северного (N) и южного (S) полюсов с направлением силовых линий относительно их ориентации: выход из северного полюса и вход в южный.

Как создается магнитное поле

Источниками магнитного поля являются:

    постоянные магниты;

    подвижные заряды;

    изменяющееся во времени электрическое поле.


С действием постоянных магнитов знаком каждый ребенок детсадовского возраста. Ведь ему уже приходилось лепить на холодильник картинки-магнитики, извлекаемые из упаковок с всякими лакомствами.

Находящиеся в движении электрические заряды обычно обладают значительно большей энергией магнитного поля, чем . Его тоже обозначают силовыми линиями. Разберем правила их начертания для прямолинейного проводника с током I.


Магнитная силовая линия проводится в плоскости, перпендикулярной движению тока так, чтобы в каждой ее точке сила, действующая на северный полюс магнитной стрелки, направлялась по касательной к этой линии. Таким образом создаются концентрические окружности вокруг движущегося заряда.

Направление этих сил определяется известным правилом винта или буравчика с правосторонней навивкой резьбы.

Правило буравчика


Необходимо расположить буравчик соосно с вектором тока и вращать рукоятку так, чтобы поступательное движение буравчика совпадало с его направлением. Тогда ориентация силовых магнитных линий будет показана вращением рукоятки.

В кольцевом проводнике вращательное движение рукоятки совпадает с направлением тока, а поступательное - указывает на ориентацию индукции.


Магнитные силовые линии всегда выходят из северного полюса и входят в южный. Они продолжаются внутри магнита и никогда не бывают разомкнутыми.

Правила взаимодействия магнитных полей

Магнитные поля от разных источников складываются друг с другом, образуя результирующее поле.


При этом магниты с разноименными полюсами (N - S) притягиваются друг к другу, а с одноименными (N – N, S - S) - отталкиваются. Силы взаимодействия между полюсами зависят от расстояния между ними. Чем ближе сдвинуты полюса, тем большее усилие возникает.

Основные характеристики магнитного поля

К ним относят:

    вектор магнитной индукции (В );

    магнитный поток (Ф);

    потокосцепление (Ψ).

Интенсивность или силу воздействия поля оценивают величиной вектора магнитной индукции . Она определяется значением силы «F», создаваемой проходящим током «I» по проводнику длиной «l». В =F/(I∙l)

Единица измерения магнитной индукции в системе СИ - Тесла (в знак памяти об ученом физике, который исследовал эти явления и описал их математическими методами). В русской технической литературе она обозначается «Тл», а в международной документации принят символ «Т».

1 Тл - это индукция такого однородного магнитного потока, который воздействует с силой в 1 ньютон на каждый метр длины прямолинейного проводника, перпендикулярно расположенного направлению поля, когда по этому проводнику проходит ток 1 ампер.

1Тл=1∙Н/(А∙м)

Направление вектора В определяется по правилу левой руки.


Если расположить ладонь левой руки в магнитном поле так, чтобы силовые линии из северного полюса входили в ладонь под прямым углом, а четыре пальца расположить по направлению тока в проводнике, то оттопыренный большой палец укажет направление действия силы на этот проводник.

В случае, когда проводник с электрическим током расположен не под прямым углом к магнитным силовым линиям, то сила, воздействующая на него, будет пропорциональна величине протекающего тока и составляющей части проекции длины проводника с током на плоскость, расположенную в перпендикулярном направлении.

Сила, воздействующая на электрический ток, не зависит от материалов, из которых создан проводник и площади его сечения. Даже если этого проводника вообще не будет, а движущиеся заряды станут перемещаться в другой среде между магнитными полюсами, то эта сила никак не изменится.

Если внутри магнитного поля во всех точках вектор В имеет одинаковое направление и величину, то такое поле считают равномерным.

Любая среда, обладающая , оказывает влияние на значение вектора индукции В .

Магнитный поток (Ф)

Если рассматривать прохождение магнитной индукции через определенную площадь S, то ограниченная ее пределами индукция будет называться магнитным потоком.


Когда площадь наклонена под каким-то углом α к направлению магнитной индукции, то магнитный поток уменьшается на величину косинуса угла наклона площади. Максимальное же его значение создается при перпендикулярном расположении площади к ее пронизывающей индукции. Ф=В·S

Единицей измерения магнитного потока является 1 вебер, определяемый прохождением индукции в 1 теслу через площадь в 1 метр квадратный.

Потокосцепление

Этот термин используется для получения суммарной величины магнитного потока, создаваемого от определенного количества проводников с током, расположенных между полюсами магнита.

Для случая, когда один и тот же ток I проходит по обмотке катушки с числом витков n, то полный (сцепленный) магнитный поток от всех витков называют потокосцеплением Ψ.


Ψ=n·Ф . Единицей измерения потокосцепления является 1 вебер.

Как образуется магнитное поле от переменного электрического

Электромагнитное поле, взаимодействующее с электрическими зарядами и телами, обладающими магнитными моментами, представляет собой совокупность двух полей:

    электрического;

    магнитного.

Они взаимосвязаны, представляют собой совокупность друг друга и при изменении в течение времени одного происходят определенные отклонения в другом. К примеру, при создании переменного синусоидального электрического поля в трехфазном генераторе одновременно образуется такое же магнитное поле с характеристиками аналогичных чередующихся гармоник.

Магнитные свойства веществ

По отношению к взаимодействию с внешним магнитным полем вещества подразделяют на:

    антиферромагнетики с уравновешенными магнитными моментами, благодаря чему создается очень малая степень намагниченности тела;

    диамагнетики со свойством намагничивания внутреннего поля против действия внешнего. Когда же внешнее поле отсутствует, то у них магнитные свойства не проявляются;

    парамагнетики со свойствами намагничивания внутреннего поля по направлению действия внешнего, которые обладают малой степенью ;

    ферромагнетики , обладающие магнитными свойствами без приложенного внешнего поля при температурах, меньших значения точки Кюри;

    ферримагнетики с неуравновешенными по величине и направлению магнитными моментами.

Все эти свойства веществ нашли разнообразное применение в современной технике.

Магнитные цепи

На основе работают все трансформаторы, индуктивности, электрические машины и многие другие устройства.

Например, у работающего электромагнита магнитный поток проходит по магнитопроводу из ферромагнитных сталей и воздуху с выраженными не ферромагнитными свойствами. Совокупность этих элементов и составляет магнитную цепь.

Большинство электрических аппаратов в своей конструкции имеют магнитные цепи. Подробнее про это читайте в этой статье -

См. также: Портал:Физика

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля .

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля) . С математической точки зрения - векторное поле , определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал .

Магнитное поле можно назвать особым видом материи , посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом .

Магнитные поля являются необходимым (в контексте ) следствием существования электрических полей.

  • С точки зрения квантовой теории поля магнитное взаимодействие - как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) - виртуальным.

Источники магнитного поля

Магнитное поле создаётся (порождается) током заряженных частиц , или изменяющимся во времени электрическим полем , или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Вычисление

В простых случаях магнитное поле проводника с током (в том числе и для случая тока, распределённого произвольным образом по объёму или пространству) может быть найдено из закона Био - Савара - Лапласа или теоремы о циркуляции (она же - закон Ампера). В принципе, этот способ ограничивается случаем (приближением) магнитостатики - то есть случаем постоянных (если речь идёт о строгой применимости) или достаточно медленно меняющихся (если речь идёт о приближенном применении) магнитных и электрических полей.

В более сложных ситуациях ищется как решение уравнений Максвелла .

Проявление магнитного поля

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца , которая всегда направлена перпендикулярно к векторам v и B . Она пропорциональна заряду частицы q , составляющей скорости v , перпендикулярной направлению вектора магнитного поля B , и величине индукции магнитного поля B . В системе единиц СИ сила Лоренца выражается так:

в системе единиц СГС:

где квадратными скобками обозначено векторное произведение .

Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током . Сила, действующая на проводник с током называется силой Ампера . Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

Взаимодействие двух магнитов

Одно из наиболее часто встречающихся в обычной жизни проявлений магнитного поля - взаимодействие двух магнитов : одинаковые полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами как взаимодействие между двумя монополями , и с формальной точки зрения эта идея вполне реализуема и часто весьма удобна, а значит практически полезна (в расчётах); однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления (наиболее очевидным вопросом, не получающим объяснения в рамках такой модели, является вопрос о том, почему монополи никогда не могут быть разделены, то есть почему эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом; кроме того, слабостью модели является то, что она неприменима к магнитному полю, создаваемому макроскопическим током, а значит, если не рассматривать её как чисто формальный приём, приводит лишь к усложнению теории в фундаментальном смысле).

Правильнее будет сказать, что на магнитный диполь , помещённый в неоднородное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем. Но никакой магнит не испытывает действия (суммарной) силы со стороны однородного магнитного поля. Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле :

Сила, действующая на магнит (не являющийся одиночным точечным диполем) со стороны неоднородного магнитного поля, может быть определена суммированием всех сил (определяемых данной формулой), действующих на элементарные диполи, составляющие магнит.

Впрочем, возможен подход, сводящий взаимодействие магнитов к силе Ампера, а сама формула выше для силы, действующей на магнитный диполь, тоже может быть получена, исходя из силы Ампера.

Явление электромагнитной индукции

Векторное поле H измеряется в амперах на метр (А/м) в системе СИ и в эрстедах в СГС . Эрстеды и гауссы являются тождественными величинами, их разделение является чисто терминологическим.

Энергия магнитного поля

Приращение плотности энергии магнитного поля равно:

H - напряжённость магнитного поля , B - магнитная индукция

В линейном тензорном приближении магнитная проницаемость есть тензор (обозначим его ) и умножение вектора на неё есть тензорное (матричное) умножение:

или в компонентах .

Плотность энергии в этом приближении равна:

- компоненты тензора магнитной проницаемости , - тензор, представимый матрицей, обратной матрице тензора магнитной проницаемости, - магнитная постоянная

При выборе осей координат совпадающими с главными осями тензора магнитной проницаемости формулы в компонентах упрощаются:

- диагональные компоненты тензора магнитной проницаемости в его собственных осях (остальные компоненты в данных специальных координатах - и только в них! - равны нулю).

В изотропном линейном магнетике:

- относительная магнитная проницаемость

В вакууме и:

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

Ф - магнитный поток , I - ток, L - индуктивность катушки или витка с током.

Магнитные свойства веществ

С фундаментальной точки зрения, как это было указано выше, магнитное поле может создаваться (а значит - в контексте этого параграфа - и ослабляться или усиливаться) переменным электрическим полем, электрическими токами в виде потоков заряженных частиц или магнитными моментами частиц.

Конкретные микроскопическая структура и свойства различных веществ (а также их смесей, сплавов, агрегатных состояний, кристаллических модификаций и т. д.) приводят к тому, что на макроскопическом уровне они могут вести себя достаточно разнообразно под действием внешнего магнитного поля (в частности, ослабляя или усиливая его в разной степени).

В связи с этим вещества (и вообще среды) в отношении их магнитных свойств делятся на такие основные группы:

  • Антиферромагнетики - вещества, в которых установился антиферромагнитный порядок магнитных моментов атомов или ионов : магнитные моменты веществ направлены противоположно и равны по силе.
  • Диамагнетики - вещества, намагничивающиеся против направления внешнего магнитного поля.
  • Парамагнетики - вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.
  • Ферромагнетики - вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов
  • Ферримагнетики - материалы, у которых магнитные моменты вещества направлены противоположно и не равны по силе.
  • К перечисленным выше группы веществ в основном относятся обычные твердые или (к некоторым) жидкие вещества, а также газы. Существенно отличается взаимодействие с магнитным полем сверхпроводников и плазмы .

Токи Фуко

Токи Фуко́ (вихревые токи) - замкнутые электрические токи в массивном проводнике , возникающие при изменении пронизывающего его магнитного потока . Они являются индукционными токами , образующимися в проводящем теле либо вследствие изменения во времени магнитного поля, в котором оно находится, либо в результате движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или любую его часть. Согласно правилу Ленца , магнитное поле токов Фуко направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему эти токи .

История развития представлений о магнитном поле

Хотя магниты и магнетизм были известны гораздо раньше, изучение магнитного поля началось в 1269 году, когда французский ученый Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами» по аналогии с полюсами Земли. Почти три столетия спустя, Уильям Гильберт Колчестер использовал труд Петра Перегрина и впервые определённо заявил, что сама Земля является магнитом. Опубликованная в 1600 году, работа Гилберта «De Magnete» , заложила основы магнетизма как науки.

Три открытия подряд бросили вызов этой «основе магнетизма». Во-первых, в 1819 году Ханс Кристиан Эрстед обнаружил, что электрический ток создает магнитное поле вокруг себя. Затем, в 1820 году, Андре-Мари Ампер показал, что параллельные провода, по которым идёт ток в одном и том же направлении, притягиваются друг к другу. Наконец, Жан-Батист Био и Феликс Савар в 1820 году открыли закон, названный законом Био-Савара-Лапласа , который правильно предсказывал магнитное поле вокруг любого провода, находящегося под напряжением.

Расширив эти эксперименты, Ампер издал свою собственную успешную модель магнетизма в 1825 году. В ней он показал эквивалентность электрического тока в магнитах, и вместо диполей магнитных зарядов модели Пуассона, предложил идею, что магнетизм связан с постоянно текущими петлями тока. Эта идея объясняла, почему магнитный заряд не может быть изолирован. Кроме того, Ампер вывел закон, названный его именем , который, как и закон Био-Савара-Лапласа, правильно описал магнитное поля, создаваемое постоянным током, а также была введена теорема о циркуляции магнитного поля . Кроме того, в этой работе, Ампер ввел термин «электродинамика» для описания взаимосвязи между электричеством и магнетизмом.

Хотя подразумеваемая в законе Ампера сила магнитного поля движущегося электрического заряда не была явно заявлена, в 1892 году Хендрик Лоренц вывел её из уравнений Максвелла. При этом классическая теория электродинамики была в основном завершена.

Двадцатый век расширил взгляды на электродинамику, благодаря появлению теории относительности и квантовой механики. Альберт Эйнштейн в своей статье 1905 года, где была обоснована его теория относительности, показал, что электрические и магнитные поля являются частью одного и того же явления, рассматриваемого в разных системах отсчета. (См. Движущийся магнит и проблема проводника - мысленный эксперимент , который в конечном итоге помог Эйнштейну в разработке специальной теории относительности). Наконец, квантовая механика была объединена с электродинамикой для формирования квантовой электродинамики (КЭД).

См. также

  • Магнитная плёнка визуализатор

Примечания

  1. БСЭ. 1973, «Советская энциклопедия».
  2. В частных случаях магнитное поле может существовать и в отсутствие электрического поля, но вообще говоря магнитное поле глубоко взаимосвязано с электрическим как динамически (взаимное порождение переменными электрическим и магнитным полем друг друга), так и в том смысле, что при переходе в новую систему отсчёта магнитное и электрическое поле выражаются друг через друга, то есть вообще говоря не могут быть безусловно разделены.
  3. Яворский Б. М., Детлаф А. А. Справочник по физике: 2-е изд., перераб. - М .: Наука , Главная редакция физико-математической литературы, 1985, - 512 с.
  4. В СИ магнитная индукция измеряется в теслах (Тл), в системе СГС в гауссах .
  5. Точно совпадают в системе единиц СГС , в СИ - отличаются постоянным коэффициентом, что, конечно, не меняет факта их практического физического тождества.
  6. Самым важным и лежащим на поверхности отличием тут является то, что сила, действующая на движущуюся частицу (или на магнитный диполь) вычисляются именно через а не через . Любой другой физически корректный и осмысленный метод измерения также даст возможность измерить именно хотя для формального расчета иногда оказывается более удобным - в чём, собственно, и состоит смысл введения этой вспомогательной величины (иначе без неё вообще обходились бы, используя только
  7. Однако надо хорошо понимать, что ряд фундаментальных свойств этой «материи» в корне отличается от свойств того обычного вида «материи», который можно было бы обозначить термином «вещество».
  8. См. Теорема Ампера .
  9. Для однородного поля это выражение даёт нулевую силу, поскольку равны нулю все производные B по координатам.
  10. Сивухин Д. В. Общий курс физики. - Изд. 4-е, стереотипное. - М .: Физматлит ; Изд-во МФТИ, 2004. - Т. III. Электричество. - 656 с. - ISBN 5-9221-0227-3 ; ISBN 5-89155-086-5 .

Магнитное поле это материя, которая возникает вокруг источников электрического тока, а также вокруг постоянных магнитов. В пространстве магнитное поле отображается как совокупление сил, которые способны оказать воздействие на намагниченные тела. Это действие объясняется наличием движущих разрядов на молекулярном уровне.

Магнитное поле формируется только вокруг электрических зарядов, которые находятся в движении. Именно поэтому магнитное и электрическое поле являются, неотъемлемыми и вместе формируют электромагнитное поле . Компоненты магнитного поля взаимосвязаны и воздействуют друг на друга, изменяя свои свойства.

Свойства магнитного поля:
1. Магнитное поле возникает под воздействие движущих зарядов электрического тока.
2. В любой своей точке магнитное поле характеризуется вектором физической величины под названием магнитная индукция , которая является силовой характеристикой магнитного поля.
3. Магнитное поле может воздействовать только на магниты, на токопроводящие проводники и движущиеся заряды.
4. Магнитное поле может быть постоянного и переменного типа
5. Магнитное поле измеряется только специальными приборами и не может быть воспринятым органами чувств человека.
6. Магнитное поля является электродинамическим, так как порождается только при движении заряженных частиц и оказывает влияние только на заряды, которые находятся в движении.
7. Заряженные частицы двигаются по перпендикулярной траектории.

Размер магнитного поля зависит от скорости изменения магнитного поля. Соответственно этому признаку существуют два вида магнитного поля: динамичное магнитное поле и гравитационное магнитное поле . Гравитационное магнитное поле возникает только вблизи элементарных частиц и формируется в зависимости от особенностей строения этих частиц.

Магнитный момент
возникает в том случае, когда магнитное поле воздействует на токопроводящую раму. Другими словами, магнитный момент это вектор, который расположен на ту линию, которая идет перпендикулярно раме.

Магнитное поле можно изобразить графически с помощью магнитных силовых линий. Эти линии проводятся в таком направлении, так чтобы направление сил поля совпало с направлением самой силовой линии. Магнитные силовые линии являются непрерывными и замкнутыми одновременно.

Направление магнитного поля определяется с помощью магнитной стрелки. Силовые линии определяют также полярность магнита, конец с выходом силовых линий это северный полюс, а конец, с входом этих линий, это южный полюс.

Очень удобно наглядно оценить магнитное поле с помощью обычных железных опилок и листка бумаги.
Если мы на постоянный магнит положим лист бумаги, а сверху насыпим опилок, то частички железа выстроятся соответственно силовым линиям магнитного поля.

Направление силовых линий для проводника удобно определять по знаменитому правилу буравчика или правилу правой руки . Если мы обхватим проводник рукой так, чтобы большой палец смотрел по направлению тока(от минуса к плюсу), то 4 оставшиеся пальцы покажут нам направление силовых линий магнитного поля.

А направление силы Лоренца - силы, с которой действует магнитное поле на заряженную частицу или проводник с током, по правилу левой руки .
Если мы расположим левую руку в магнитном поле так, что 4 пальца смотрели по направлению тока в проводнике, а силовые линии входили в ладонь, то большой палец укажет направление силы Лоренца, силы действующей на проводник помещенный в магнитное поле.

На этом собственно всё. Появившиеся вопросы обязательно задавайте в комментариях.

Магнитное поле – это особая форма материи, которая создается магнитами, проводниками с током (движущимися заряженными частицами) и которую можно обнаружить по взаимодействию магнитов, проводников с током (движущихся заряженных частиц).

Опыт Эрстеда

Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда.

Магнитная стрелка, расположенная вблизи проводника, поворачивается на некоторый угол при включении тока в проводнике. При размыкании цепи стрелка возвращается в исходное положение.

Из опыта Г. Эрстеда следует, что вокруг этого проводника существует магнитное поле.

Опыт Ампера
Два параллельных проводника, по которым протекает электрический ток, взаимодействуют между собой: притягиваются, если токи сонаправлены, и отталкиваются, если токи направлены противоположно. Это происходит из-за взаимодействия возникающих вокруг проводников магнитных полей.

Свойства магнитного поля

1. Материально, т.е. существует независимо от нас и наших знаний о нём.

2. Создаётся магнитами, проводниками с током (движущимися заряженными частицами)

3. Обнаруживается по взаимодействию магнитов, проводников с током (движущихся заряженных частиц)

4. Действует на магниты, проводники с током (движущиеся заряженные частицы) с некоторой силой

5. Никаких магнитных зарядов в природе не существует. Нельзя разделить северный и южный полюсы и получить тело с одним полюсом.

6. Причина, вследствие которой тела обладают магнитными свойствами, была найдена французским учёным Ампером. Ампер выдвинул заключение - магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него.

Эти токи представляют собой движение электронов по орбитам в атоме.

Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу вследствие теплового движения молекул, составляющих тело, то их взаимодействия взаимно компенсируются и никаких магнитных свойств тело не обнаруживает.

И наоборот: если плоскости, в которых вращаются электроны, параллельны друг другу и направления нормалей к этим плоскостям совпадают, то такие вещества усиливают внешнее магнитное поле.


7. Магнитные силы действуют в магнитном поле по определенным направлениям, которые называют магнитными силовыми линиями. С их помощью можно удобно и наглядно показывать магнитное поле в том или ином случае.

Чтобы более точно изобразить магнитное поле, условились в тех местах, где поле сильнее, показывать силовые линии расположенными гуще, т.е. ближе друг к другу. И наоборот, в местах, где поле слабее, показывают силовые линии в меньшем количестве, т.е. расположенными реже.

8. Магнитное поле характеризует вектор магнитной индукции.

Вектор магнитной индукции - векторная величина, характеризующая магнитное поле.

Направление вектора магнитной индукции совпадает с направлением северного полюса свободной магнитной стрелки в данной точке.

Направление вектора индукции поля и силы тока I связаны «правилом правого винта (буравчика)»:

если ввинчивать буравчик по направлению тока в проводнике, то направление скорости движения конца его рукоятки в данной точке совпадет с направлением вектора магнитной индукции в этой точке.

В прошлом веке разными учеными было выдвинуто несколько предположений о том, магнитное поле Земли. Согласно одному из них, поле появляется в результате вращения планеты вокруг своей оси.

Она основана на любопытном эффекте Барнета-Энштейна, который заключается в том, что при вращении любого тела возникает магнитное поле. Атомы в этом эффекте имеют свой магнитный момент, так как вращаются вокруг своей оси. Так появляется магнитное поле Земли. Однако эта гипотеза не выдержала экспериментальных проверок. Оказалось, что магнитное поле, полученное таким нетривиальным образом, в несколько миллионов раз слабее реального.

Другая гипотеза основана на появлении магнитного поля вследствие кругового движения заряженных частиц (электронов) на поверхности планеты. Она тоже оказалась несостоятельной. Движение электронов способно вызвать появление очень слабого поля, к тому же эта гипотеза не объясняет инверсии магнитного поля Земли. Известно, что северный магнитный полюс не совпадает с северным географическим.

Солнечный ветер и токи мантии

Механизм образования магнитного поля Земли и других планет Солнечной системы до конца не изучен и пока что остается загадкой для ученых. Тем не менее, одна предложенная гипотеза довольно хорошо объясняет инверсию и величину индукции реального поля. Она основана на работе внутренних токов Земли и солнечного ветра.

Внутренние токи Земли протекают в мантии, которая состоит из веществ, обладающих очень хорошей проводимостью. Источником тока выступает ядро. Энергия от ядра к поверхности земли передается с помощью конвекции. Таким образом, в мантии наблюдается постоянное движение вещества, которое и образует магнитное поле по известному закону движения заряженных частиц. Если связывать его появление только с внутренними токами, получается, что все планеты, у которых направление вращения совпадает с направлением вращения Земли, должны иметь идентичное магнитное поле. Однако это не так. У Юпитера северный географический полюс совпадает с северным магнитным.

В образовании магнитного поля Земли участвуют не только внутренние токи. Давно известно, что оно реагирует на солнечный ветер, поток высокоэнергетических частиц, идущих от Солнца в результате реакций, происходящих на его поверхности.

Солнечный ветер по своей природе представляет собой электрический ток (движение заряженных частиц). Увлекаемый вращением Земли, он создает круговой ток, который приводит к появлению магнитного поля Земли.



Похожие статьи
 
Категории