Распределение больцмана. Барометрическая формула

23.09.2019

Бо́льцмана распределение - распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия, которое было открыто в 1868-1871 гг. австрийским физиком Л. Больцманом . Согласно ему, число частиц n i с полной энергией e i равно:

ni = Aω i exp (-e i /kT)

где ω i - статистический вес (число возможных состояний частицы с энергией e i). Постоянная А находится из условия, что сумма n i по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки): ∑n i = N. В случае, когда движение частиц подчиняется классической механике, энергию e i можно считать состоящей из кинетической энергии e i, кин частицы (молекулы или атома), ее внутренней энергии e i, вн (например, энергии возбуждения электронов) и потенциальной энергии e i, пот во внешнем поле, зависящей от положения частицы в пространстве:

e i = e i, кин + e i, вн + e i, пот

Распределение частиц по скоростям (распределение Максвелла) является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения и влиянием внешних полей. В соответствии с ним формулу распределения Больцмана можно представить в виде произведения трех экспонент, каждая из которых дает распределение частиц по одному виду энергии.

В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или других планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. e i, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула , выражающая закон уменьшения плотности атмосферы с высотой.

В астрофизике, особенно в теории звездных спектров, распределение Больцмана часто используется для определения относительной заселенности электронами различных уровней энергии атомов.

Распределение Больцмана было получено в рамках классической статистики. В 1924-1926 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе-Эйнштейна (для частиц с целым спином) и Ферми-Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение Больцмана, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, то есть когда на одну частицу приходится много квантовых состояний или, другими словами, когда степень заполнения квантовых состояний мала. Условие применимости распределения Больцмана можно записать в виде неравенства:

N/V .

где N - число частиц, V - объем системы. Это неравенство выполняется при высокой температуре и малом числе частиц в единице объема (N/V). Из него следует, что чем больше масса частиц, тем для более широкого интервала изменений Т и N/V справедливо распределение Больцмана. Например, внутри белых карликов приведенное выше неравенство нарушается для электронного газа, и поэтому его свойства следует описывать с помощью распределения Ферми-Дирака. Однако оно, а вместе с ним и распределение Больцмана, остаются справедливыми для ионной составляющей вещества. В случае газа, состоящего из частиц с нулевой массой покоя (например, газа фотонов), неравенство не выполняется ни при каких значениях Т и N/V. Поэтому равновесное излучение описывается законом излучения Планка , который является частным случаем распределения Бозе-Эйнштейна.

Из-за хаотического движения изменения в положении каждой частицы (молекулы, атома и т.д.) физической системы (макроскопического тела) носят характер случайного процесса. Поэтому можно говорить о вероятности обнаружить частицу в той или иной области пространства.

Из кинематики известно, что положение частицы в пространстве характеризуется ее радиусом-вектором или координатами.

Рассмотрим вероятность dW() обнаружить частицу в области пространства определяемой малым интервалом значений радиуса-вектора , если физическая система находится в состоянии термодинамического равновесия.

Векторный интервал будем измерять объемом dV=dxdydz.

Плотность вероятности (функция вероятности распределения значений радиуса-вектора )

(2.10)

Частица в данный момент времени реально где-то находится в указанном пространстве, значит должно выполняться условие нормировки:

Найдем функцию вероятности распределения частиц f() классического идеального газа. Газ занимает весь объем V и находится в состоянии термодинамического равновесия с температурой Т.

При отсутствии внешнего силового поля все положения каждой частицы равновероятны, т.е. газ занимает весь объем с одинаковой плотностью. Поэтому f() = c onst.

Используя условие нормировки найдем, что

т. е . f(r)=1/V .

Если число частиц газа N, то концентрация n = N/V .

Следовательно, f(r ) =n/N .

Вывод : в отсутствие внешнего силового поля вероятность dW() обнаружить частицу идеального газа в объеме dV не зависит от положения этого объема в пространстве, т.е. .

Поместим идеальный газ во внешнее силовое поле.

В результате пространственного перераспределения частиц газа плотность вероятности f() ¹ c onst.

Концентрация частиц газа n и давление его Р будут различными, т.е. в пределе где D N - среднее число частиц в объеме D V и давление в пределе , где D F- абсолютное значение средней силы, действующей нормально на площадку D S.

Если силы внешнего поля являются потенциальными и действуют в одном направлении (например, сила тяжести Земли направлена вдоль оси z), то силы давления, действующие на верхнее dS 2 и нижнее dS 1 основания объема dV, не будут равны друг другу (рис. 2.2).

Рис. 2.2

В этом случае разность сил давления dF на основания dS 1 и dS 2 должна быть скомпенсирована действием сил внешнего поля .

Суммарная разность сил давления dF = nGdV,

где G - сила, действующая на одну частицу со стороны внешнего поля.

Разность сил давления (по определению давления) dF = dPdxdy. Следовательно, dP = nGdz.

Из механики известно, что потенциальная энергия частицы во внешнем силовом поле связана с силой этого поля соотношением .

Тогда разность давлений на верхнее и нижнее основания выделенного объема dP = - n dW p .

В состоянии термодинамического равновесия физической системы ее температура Т в пределах объема dV везде одинакова. Поэтому используем уравнение состояния идеального газа для давления dP = kTdn.

Решив совместно последние два равенства получим, что

- ndW p = kTdn или .

После преобразований найдем, что

или

где ℓ n n o - постоянная интегрирования (n o - концентрации частиц в том месте пространства, где W p =0).

После потенцирования, получим

Вероятность обнаружить частицу идеального газа в объеме dV, расположенного у точки, определяемой радиусом-вектором , представим в виде

где Р о = n o kT.

Применим распределение Больцмана к атмосферному воздуху, находящему в поле тяготения Земли.

В состав атмосферы Земли входят газы: азот - 78,1 %; кислород - 21 %; аргон-0,9 %. Масса атмосферы -5,15 × 10 18 кг. На высоте 20-25 км - слой озона.

Вблизи земной поверхности потенциальная энергия частиц воздуха на высоте h W p = m o gh , где m o - масса частицы.

Потенциальная энергия на уровне Земли (h=0) равна нулю (W p =0).

Если в состоянии термодинамического равновесия частицы земной атмосферы имеют температуру Т, то изменение давления атмосферного воздуха с высотой происходит по закону

(2.15)

Формула (2.15) называется барометрической формулой ; применима для разреженных смесей газов.

Заключение : для земной атмосферы чем тяжелее газ, тем быстрее падает его давление в зависимости от высоты, т.е. по мере увеличения высоты атмосфера должна все более обогащаться легкими газами. Из-за изменения температуры атмосфера не находится в равновесном состоянии. Следовательно, барометрическую формулу можно применять к малым участкам, в пределах которых изменения температуры не происходит. Кроме того, на неравновесность земной атмосферы влияет гравитационное поле Земли, которое не может удержать ее вблизи поверхности планеты. Происходит рассеивание атмосферы и тем быстрее, чем слабее гравитационное поле. Например, земная атмосфера рассеивается достаточно медленно. За время существования Земли (~ 4-5 млрд. лет) она потеряла малую часть своей атмосферы (в основном легких газов: водорода, гелия и др.).

Гравитационное поле Луны слабее земного, поэтому она практически полностью потеряла свою атмосферу.

Неравновесность земной атмосферы можно доказать следующим образом. Допустим, что атмосфера Земли пришла в состояние термодинамического равновесия и в любой точке ее пространства она имеет постоянную температуру. Применим формулу Больцмана (2.11), в которой роль потенциальной энергии выполняет потенциальная энергия гравитационного поля Земли, т.е.

где g - гравитационная постоянная; М з - масса Земли; m o - масса частицы воздуха; r - расстояние частицы от центра Земли. = R з , где R з - радиус Земли, то

(2.17)

Это означает, что n ¥ ¹ 0. Но число частиц в атмосфере Земли - конечно. Поэтому такое число частиц не может быть распространено по бесконечному объему.

Следовательно, действительно земная атмосфера не может находиться в равновесном состоянии.

закон изменения давления с высотой, предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова

Выражение (45.2) называется барометрической формулой. Она позволяет найти атмос­ферное давление в зависимости от высоты или, измерив давление, найти высоту: Так как высоты обозначаются относительно уровня моря, где давление считается нормаль­ным, то выражение (45.2) может быть записано в виде

где р - давление на высоте h.

Барометрическую формулу (45.3) можно преобразовать, если воспользоваться вы­ражением (42.6) p = nkT :

где n – концентрация молекул на высоте h , n 0 – то же, на высоте h = 0. Так как M= m 0 N A (N A – постоянная Авогадро, т 0 масса одной молекулы), a R = kN A , то

где m 0 gh =П - потенциальная энергия молекулы в поле тяготения, т. е.

Выражение (45.5) называется распределением Больцмана для внешнего потенциаль­ного поля. Из вето следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.

Если частицы имеют одинаковую массу и находятся в состоянии хаотического теплового движения, то распределение Больцмана (45.5) справедливо в любом вне­шнем потенциальном поле, а не только в поле сил тяжести.

24. Закон равномерного распределения энергии по степеням свободы. Число степеней свободы. Средняя кинетическая энергия теплового движения молекул.

На среднюю кинетическую энергию молекулы, имеющей i-степеней свободы, приходится Это есть закон Больцмана о равномерном распределении средней кинетической энергии по степеням свободы. Молекулы можно рассматривать как системы материальных точек (атомов) совершающих как поступательное, так и вращательное движения. При движении точки по прямой линии для оценки ее положения необходимо знать одну координату, т.е. точка имеет одну степень свободы. Если точка движения по плоскости, ее положение характеризуется двумя координатами; при этом точка обладает двумя степенями свободы. Положение точки в пространстве определяется 3 координатами. Число степеней свободы обычно обозначают буквой i. Молекулы, которые состоят из обычного атома, считаются материальными точками и имеют три степени свободы (аргон, гелий). Средняя кинетическая энергия молекул газа (в расчете на одну молекулу) определяется выражениемКинетическая энергия поступательного движения атомов и молекул, усредненная по огромному числу беспорядочно движущихся частиц, является мерилом того, что называется температурой. Если температура T измеряется в градусах Кельвина (К), то связь ее с Ek дается соотношениемИз уравнений (6) и (7) можно определить значение средне-квадратичной скорости молекулВнутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Отсюда вытекает закон Джоуля, подтверждаемый многочисленными экспериментами. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение:Поскольку потенциальная энергия взаимодействия молекул зависит от расстояния между ними, в общем случае внутренняя энергия U тела зависит наряду с температурой T также и от объема V: U = U (T, V). Принято говорить, что внутренняя энергия является функцией состояния.

Барометрическая формула. Рассмотрим газ, находящийся в равновесии в поле силы тяжести. В этом случае сумма действующих сил на каждый элемент объема газа равна нулю. Выделим малый объем газа на высоте h (рис.2.7) и рассмотрим действующие на него силы:

На выделенный объем действует сила давления газа снизу, сила давления газа сверху и сила тяжести. Тогда баланс сил запишется в виде

где dm – масса выделенного объема. Для этого объема можно записать уравнение Менделеева-Клапейрона

Выражая величину dm , можно получить уравнение

Разделяя переменные, получим

Проинтегрируем полученное уравнение, учтя, что температура постоянна,

Пусть давление на поверхности равно p 0 , тогда полученное уравнение легко преобразовать к виду

Полученная формула называется барометрической и достаточно хорошо описывает распределение давления по высоте в атмосфере Земли и других планет. Важно помнить, что эта формула была выведена из предположения равновесия газа, при этом величины g и T считались постоянными, что, конечно, не всегда справедливо для реальной атмосферы.

Распределение Больцмана. Запишем барометрическую формулу (2.24) через концентрацию частиц, воспользовавшись тем, что p = nkT :

где m 0 - масса молекулы газа.

Такой же вывод можно провести для любой потенциальной силы (не обязательно для силы тяжести). Из формулы (2.25) видно, что в числителе экспоненты стоит потенциальная энергия одной молекулы в потенциальном поле. Тогда формулу (2.25) можно записать в виде

В таком виде эта формула пригодна для нахождения концентрации молекул, находящихся в равновесии в поле любой потенциальной силы.

Найдем число частиц газа, координаты которых находятся в элементе объема dV = dxdydz

Полное число частиц в системе может быть записано в виде

Здесь интеграл формально записан по всему пространству, но надо иметь в виду, что объем системы конечен, что приведет к тому, что интегрирование будет вестись по всему объему системы. Тогда отношение

как раз и даст вероятность того, что частица попадет в элемент объема dV . Тогда для этой вероятности запишем

где величина потенциальной энергии молекулы будет, вообще говоря, зависеть от всех трех координат. Пользуясь определением функции распределения, можно записать функцию распределения молекул по координатам в следующем виде:

Это и есть функция распределения Больцмана по координатам частиц (или по потенциальным энергиям, имея в виду, что потенциальная энергия зависит от координат). Легко показать, что полученная функция нормирована на единицу.


Связь распределений Максвелла и Больцмана. Распределения Максвелла и Больцмана являются составными частями распределения Гиббса. Температура определяется средней кинетической энергией. Поэтому возникает вопрос, почему в потенциальном поле температура постоянная, хотя по закону сохранения энергии при изменении потенциальной энергии частиц должна также изменяться их кинетическая энергия, а следовательно, как кажется на первый взгляд, и их температура. Другими словами, почему в поле тяжести при движении частиц вверх у всех них кинетическая энергия уменьшается, а температура остается постоянной, т.е. остается постоянной их средняя кинетическая энергия, а при движении частиц вниз энергия всех частиц увеличивается, а средняя энергия остается постоянной?

Это объясняется тем, что при подъеме из потока частиц выбывают наиболее медленные, т.е. «наиболее холодные». Поэтому расчет энергии ведется по меньшему числу частиц, которые на исходной высоте были в среднем «более горячими». Иначе говоря, если с нулевой высоты на высоту прибыло какое-то число частиц, то их средняя энергия на высоте равна средней энергии всех частиц на нулевой высоте, часть которых не смогла достигнуть высоты из-за малой кинетической энергии. Однако если на нулевой высоте рассчитать среднюю энергию частиц, достигших высоты , то она больше средней энергии всех частиц на нулевой высоте. Поэтому можно сказать, что средняя энергия частиц на высоте действительно уменьшилась и в этом смысле они «охладились» при подъеме. Однако средняя энергия всех частиц на нулевой высоте и высоте одинакова, т.е. и температура одинакова. С другой стороны, уменьшение плотности частиц с высотой также является следствием выбывания частиц из потока.

Поэтому закон сохранения энергии при подъеме частиц на высоту приводит к уменьшению их кинетических энергий и выбыванию частиц из потока. Благодаря этому, с одной стороны, плотность частиц с высотой уменьшается, а с другой стороны, их средняя кинетическая энергия сохраняется, несмотря на то, что кинетическая энергия каждой из частиц убывает. Это возможно подтвердить прямым расчетом, который рекомендуется проделать в качестве упражнения.

Атмосфера планет. Потенциальная энергия частицы массой в поле тяготения шарообразного небесного тела равна

где – масса тела; – расстояние от центра тела до частицы; – гравитационная постоянная. Атмосфера планет, в том числе и Земли, не находится в равновесном состоянии. Например, вследствие того, что атмосфера Земли находится в неравновесном состоянии, ее температура не постоянна, как это должно было быть, а изменяется с высотой (уменьшается с увеличением высоты). Покажем, что равновесное состояние атмосферы планеты в принципе невозможно. Если бы оно было возможно, то плотность атмосферы должна была бы изменяться с высотой по формуле (2.26), которая принимает вид

где учтено выражение (2.28) для потенциальной энергии, – радиус планеты. Формула (2.29) показывает, что при плотность стремится к конечному пределу

Это означает, что если в атмосфере имеется конечное число молекул, то они должны быть распределены по всему бесконечному пространству, т.е. атмосфера рассеяна.

Поскольку, в конечном счете, все системы стремятся к равновесному состоянию, то атмосфера планет постепенно рассеивается. У некоторых из небесных тел, например у Луны, атмосфера полностью исчезла, другие, например Марс, имеют очень разряженную атмосферу. Таким образом, атмосфера Луны достигла равновесного состояния, а атмосфера Марса уже находится близко к достижению равновесного состояния. У Венеры атмосфера очень плотная и, следовательно, находится в начале пути к равновесному состоянию.

Для количественного рассмотрения вопроса о потере атмосферы планетами необходимо принять во внимание распределение молекул по скоростям. Силу земного притяжения могут преодолеть лишь молекулы, скорость которых превосходит вторую космическую. Эти молекулы находятся в «хвосте» распределения Максвелла и их относительное число незначительно. Тем не менее за значительные промежутки времени потеря молекул является чувствительной. Поскольку вторая космическая скорость у тяжелых планет больше, чем у легких, интенсивность потери атмосферы у массивных небесных тел меньше, чем у легких, т.е. легкие планеты теряют атмосферу быстрее, чем тяжелые. Время потери атмосферы зависит также от радиуса планеты, состава атмосферы и т.д. Полный количественный анализ этого вопроса является сложной задачей.

Экспериментальная проверка распределения Больцмана. При выводе распределения Больцмана не налагалось никаких ограничений на массу частиц. Поэтому в принципе оно применимо и для тяжелых частиц. Возьмем в качестве этих частиц, например, песчинки. Ясно, что они расположатся в некотором слое у сосуда. Строго говоря, это является следствием распределения Больцмана. При больших массах частиц показатель экспоненты столь быстро изменяется с высотой, что равен нулю везде за пределами слоя песка. Что касается пространства внутри слоя, то там надо принять во внимание объем песчинок. Это сведется к чисто механической задаче на минимум потенциальной энергии при заданных связях. Задачи такого типа рассматриваются не в статистической физике, а в механике.

Для того чтобы тяжелые частицы не «осели на дно», распределились в достаточно большом слое на высоте, необходимо чтобы их потенциальная энергия была достаточно малой. Этого можно достигнуть, помещая частицы в жидкость, плотность которой лишь на немного меньше плотности материала частиц. Обозначив плотность и объем частиц и , а плотность жидкости – , видим, что сила, действующая на частицу, равна . Следовательно, потенциальная энергия такой частицы на высоте от дна сосуда равна

Поэтому распределение концентраций этих частиц по высоте дается формулой

Чтобы эффект был достаточно хорошо заметен, частицы должны быть достаточно малыми. Число таких частиц на разных высотах в сосуде считают с помощью микроскопа. Эксперименты такого рода впервые были выполнены начиная с 1906 г. Ж.Б. Перреном (1870-1942).

Проделав измерения, можно прежде всего убедиться, действительно ли концентрация частиц изменяется по экспоненциальном закону. Перрен доказал, что это действительно так, и, следовательно, распределение Больцмана справедливо. Далее, исходя из справедливости распределения и измерив независимыми способами объемы и плотности частиц, можно по результатам эксперимента найти значение постоянной Больцмана , поскольку все остальные величины в (2.32) являются известными.

Таким путем Перрен измерил и получил результат, весьма близкий к современному. Другим независимым способом значение было получено Перреном из опытов с броуновским движением.

В последующем были проведены также эксперименты другого типа, полностью подтвердившие распределение Больцмана. Из экспериментов другого типа можно указать, например, на проверку зависимости поляризации полярных диэлектриков от температуры, рассмотренную выше.

Пример 2.2. Перрен использовал распределение гуммигутовых зерен в воде для измерения постоянной Авогадро. Плотность частиц гуммигута составляла r = 1,21×10 3 кг/м 3 , их объем t = 1,03×10 -19 м 3 . Температура, при которой проводился эксперимент, была равна . Найти высоту , на которой плотность распределения гуммигутовых зерен уменьшилась в два раза.

Принимая во внимание, что, по условию задачи, t(r - r 0) = 0,22×10 -16 кг, получаем на основе формулы (2.32) h = kT ln2/ = 12,3×10 -6 м.

Пример 2.3. В воздухе при температуре и давлении Па взвешены шарообразные частицы радиусом 10 -7 м. Найти массу взвешенной частицы.

По формуле (2.32) находим t(r - r 0) = kT ln2/gh = 1,06×10 -23 кг.

Учитывая, что t = 4,19×10 -21 м 3 , находим (r - r 0) = 2,53×10 -3 кг/м 3 . Поскольку r 0 = 1,293 кг/м 3 , получаем r = 1,296 кг/м 3 и, следовательно, масса частицы

Распределение Больцмана

В барометрической формуле в отношении M/R разделим и числитель и знаменатель на число Авогадро .

Масса одной молекулы,

Постоянная Больцмана.

Вместо Р и подставим соответственно. (см. лекцию №7), где плотность молекул на высоте h , плотность молекул на высоте .

Из барометрической формулы в результате подстановок и сокращений получим распределение концентрации молекул по высоте в поле силы тяжести Земли.

Из этой формулы следует, что с понижением температуры число частиц на высотах, отличных от нуля, убывает (рис. 8.10), обращаясь в 0 при Т=0 (при абсолютном нуле все молекулы расположились бы на поверхности Земли). При высоких температурах n слабо убывает с высотой, так

Следовательно, распределение молекул по высоте является и распределением их по значениям потенциальной энергии .

(*)

где плотность молекул в том месте пространства, где потенциальная энергия молекулы имеет значение ; плотность молекул в том месте, где потенциальная энергия равна 0.

Больцман доказал, что распределение (*) справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения .

Таким образом, закон Больцмана (*) даёт распределение частиц, находящихся в состоянии хаотического теплового движения, по значениям потенциальной энергии . (рис. 8.11)

Рис. 8.11

4. Распределение Больцмана при дискретных уровнях энергии .

Полученное Больцманом распределение относится к случаям, когда молекулы находятся во внешнем поле и их потенциальная энергия может применяться непрерывно. Больцман обобщил полученный им закон на случай распределения, зависящего от внутренней энергии молекулы.

Известно, что величина внутренней энергии молекулы (или атома) Е может принимать лишь дискретный ряд дозволенных значений . В этом случае распределение Больцмана имеет вид:

где число частиц в состоянии с энергией ;

Коэффициент пропорциональности, который удовлетворяет условию

где N – полное число частиц в рассматриваемой системе.

Тогда и в результате для случая дискретных значений энергии распределение Больцмана

Но состояние системы в этом случае термодинамически неравновесное.

5. Статистика Максвелла-Больцмана

Распределение Максвелла и Больцмана можно объединить в один закон Максвелла-Больцмана, согласно которому число молекул, компоненты скорости которых лежат в пределах от до , а координаты в пределах от x, y, z до x+dx, y+dy, z+dz , равно

где , плотность молекул в том месте пространства, где ; ; ; полная механическая энергия частицы.

Распределение Максвелла-Больцмана устанавливает распределение молекул газа по координатам и скоростям при наличии произвольного потенциального силового поля .

Примечание : распределение Максвелла и Больцмана являются составными частями единого распределения, называемого распределением Гиббса (этот вопрос подробно рассматривается в спецкурсах по статической физике, и мы ограничимся только упоминанием этого факта).

Вопросы для самоконтроля.

1. Дайте определение вероятности.

2. Каков смысл функции распределения?

3. Каков смысл условия нормировки?

4. Запишите формулу для определения среднего значения результатов измерения величины x с помощью функции распределения.

5. Что представляет собой распределение Максвелла?

6. Что такое функция распределения Максвелла? Каков ее физический смысл?

7. Постройте график функции распределения Максвелла и укажите характерные особенности этой функции.

8. Укажите на графике наиболее вероятную скорость . Получите выражение для . Как изменяется график при повышении температуры?

9. Получите барометрическую формулу. Что она определяет?

10. Получите зависимость концентрации молекул газа в поле силы тяжести от высоты.

11. Запишите закон распределения Больцмана а) для молекул идеального газа в поле силы тяжести; б) для частиц массой m, находящихся в роторе центрифуги, вращающейся с угловой скоростью .

12. Объясните физический смысл распределения Максвелла-Больцмана.

Лекция №9

Реальные газы

1. Силы межмолекулярного взаимодействия в газах. Уравнение Ван-дер-Ваальса. Изотермы реальных газов.

2. Метастабильные состояния. Критическое состояние.

3. Внутренняя энергия реального газа.

4. Эффект Джоуля – Томсона. Сжижение газов и получение низких температур.

1. Силы межмолекулярного взаимодействия в газах

Многие реальные газы подчиняются законам идеальных газов при нормальных условиях . Воздух можно считать идеальным до давлений ~ 10 атм . При повышении давления отклонения от идеальности (отклонение от состояния, описываемого уравнением Менделеева - Клайперона) возрастают и при p=1000 атм достигают более 100%.

и притяжения , а F – их результирующая . Силы отталкивания считаются положительными , а силы взаимного притяжения – отрицательными . Соответствующая качественная кривая зависимости энергии взаимодействия молекул от расстояния r между центрами молекул приведена на

рис. 9.1б). На малых расстояниях молекулы отталкиваются, на больших притягиваются. Быстро возрастающие на малых расстояниях силы отталкивания означают грубо говоря, что молекулы как бы занимают некоторый определённый объём, дальше которого газ не может быть сжат .



Похожие статьи
 
Категории