Составить пропорцию. Как высчитать процент от суммы с помощью пропорции

14.10.2019

Пропорция - это математическое выражение, в котором два или более числа сравниваются друг с другом. В пропорциях могут сравниваться абсолютные величины и количества или части более крупного целого. Пропорции можно записывать и вычислять несколькими различными способами, однако в основе лежит один и тот же общий принцип.

Шаги

Часть 1

Что такое пропорция

    Узнайте, для чего служат пропорции. Пропорции используются как в научных исследованиях, так и в повседневной жизни для сравнения различных величин и количеств. В простейшем случае сравниваются два числа, но пропорция может включать в себя любое количество величин. При сравнении двух или большего количества величин всегда можно применить пропорцию. Знание того, как величины соотносятся друг с другом, позволяет, к примеру, записать химические формулы или рецепты различных блюд. Пропорции пригодятся вам для самых разных целей.

  1. Ознакомьтесь с тем, что означает пропорция. Как отмечено выше, пропорции позволяют определить соотношение между двумя и более величинами. Например, если для приготовления печенья необходимо 2 стакана муки и 1 стакан сахара, мы говорим, что между количеством муки и сахара существует пропорция (отношение) 2 к 1.

    • С помощью пропорций можно показать, как различные величины относятся друг к другу, даже если они не связаны между собой непосредственно (в отличие от рецепта). Например, если в классе пять девочек и десять мальчиков, отношение количества девочек к числу мальчиков составляет 5 к 10. В этом случае одно число не зависит от другого и не связано с ним непосредственно: пропорция может измениться, если кто-то покинет класс или наоборот, в него придут новые ученики. Пропорция просто позволяет сравнить две величины.
  2. Обратите внимание на различные способы выражения пропорций. Пропорции можно записать словами или использовать математические символы.

    • В обыденной жизни пропорции чаще выражают словами (как приведено выше). Пропорции используются в самым разных областях, и если ваша профессия не связана с математикой или другой наукой, чаще всего вам будет попадаться именно такой способ записи пропорций.
    • Пропорции часто записывают посредством двоеточия. При сравнении двух чисел с помощью пропорции их можно записать через двоеточие, например 7:13. Если сравнивается более двух чисел, двоеточие ставится последовательно между каждыми двумя числами, например 10:2:23. В приведенном выше примере для класса мы сравниваем количество девочек и мальчиков, причем 5 девочек: 10 мальчиков. Таким образом, в этом случае пропорцию можно записать в виде 5:10.
    • Иногда при записи пропорций используют знак дроби. В нашем примере с классом отношение 5 девочек к 10 мальчикам запишется как 5/10. В этом случае не следует читать знак “делить” и необходимо помнить, что это не дробь, а соотношение двух разных чисел.

    Часть 2

    Операции с пропорциями
    1. Приведите пропорцию к простейшей форме. Пропорции можно упрощать, как и дроби, за счет сокращения входящих в них членов на общий делитель . Чтобы упростить пропорцию, поделите все входящие в нее числа на общие делители. Однако при этом не следует забывать о первоначальных величинах, которые привели к данной пропорции.

      • В приведенном выше примере с классом из 5 девочек и 10 мальчиков (5:10) обе стороны пропорции имеют общий делитель 5. Поделив обе величины на 5 (наибольший общий делитель), получаем отношение 1 девочка на 2 мальчика (то есть 1:2). Однако при использовании упрощенной пропорции следует помнить о первоначальных числах: в классе не 3 ученика, а 15. Сокращенная пропорция лишь показывает отношение между количеством девочек и мальчиков. На каждую девочку приходится два мальчика, но это отнюдь не означает, что в классе 1 девочка и 2 мальчика.
      • Некоторые пропорции не поддаются упрощениям. Например, отношение 3:56 нельзя сократить, так как входящие в пропорцию величины не имеют общего делителя: 3 является простым числом, а 56 не делится на 3.
    2. Для “масштабирования” пропорции можно умножать или делить. Пропорциями часто пользуются для того, чтобы увеличить или уменьшить числа в пропорции друг к другу. Умножение или деление всех входящих в пропорцию величин на одно и то же число сохраняет неизменным отношение между ними. Таким образом, пропорции можно умножать или делить на “масштабный” фактор.

      • Предположим, пекарю необходимо утроить количество выпекаемого печенья. Если мука и сахар берутся в пропорции 2 к 1 (2:1), для увеличения количества печенья в три раза данную пропорцию следует умножить на 3. В результате получится 6 стаканов муки на 3 стакана сахара (6:3).
      • Можно поступать и наоборот. Если пекарю необходимо уменьшить количество печенья в два раза, следует обе части пропорции поделить на 2 (или умножить на 1/2). В результате получится 1 стакан муки на полстакана (1/2, или 0,5 стакана) сахара.
    3. Научитесь по двум эквивалентным пропорциям находить неизвестную величину. Еще одной распространенной задачей, для решения которой широко используются пропорции, является нахождение неизвестной величины в одной из пропорций, если дана аналогичная ей вторая пропорция. Правило умножения дробей значительно упрощает эту задачу. Запишите каждую пропорцию в виде дроби, затем приравняйте эти дроби друг другу и найдите искомую величину.

      • Предположим, у нас есть небольшая группа учеников из 2 мальчиков и 5 девочек. Если мы хотим сохранить соотношение между мальчиками и девочками, сколько мальчиков должно быть в классе, в который входит 20 девочек? Для начала составим обе пропорции, одна из которых содержит неизвестную величину: 2 мальчика: 5 девочек = x мальчиков: 20 девочек. Если мы запишем пропорции в виде дробей, у нас получится 2/5 и x/20. После умножения обеих частей равенства на знаменатели получаем уравнение 5x=40; делим 40 на 5 и в итоге находим x=8.

    Часть 3

    Выявление ошибок
    1. При операциях с пропорциями избегайте сложения и вычитания. Многие задачи с пропорциями звучат подобно следующей: “Для приготовления блюда требуется 4 картофелины и 5 морковок. Если вы хотите использовать 8 картофелин, сколько морковок вам понадобится?” Многие допускают ошибку и пытаются просто сложить соответствующие величины. Однако для сохранения прежней пропорции следует умножать, а не складывать. Вот ошибочное и правильное решение данной задачи:

      • Неправильный метод: “8 - 4 = 4, то есть в рецепте добавилось 4 картофелины. Значит, необходимо взять прежние 5 морковок и прибавить к ним 4, чтобы... что-то не то! С пропорциями действуют по-другому. Попробуем еще раз“.
      • Правильный метод: “8/4 = 2, то есть количество картофелин выросло в 2 раза. Это значит, что и число морковок следует умножить на 2. 5 x 2 = 10, то есть в новом рецепте необходимо использовать 10 морковок“.
    2. Переведите все значения в одинаковые единицы измерения. Иногда проблема возникает из-за того, что величины имеют разные единицы измерения. Прежде чем записывать пропорцию, переведите все величины в одинаковые единицы измерения. Например:

      • У дракона есть 500 граммов золота и 10 килограммов серебра. Каково соотношение золота к серебру в драконьих запасах?
      • Граммы и килограммы являются различными единицами измерения, поэтому их следует унифицировать. 1 килограмм = 1 000 граммов, то есть 10 килограммов = 10 килограммов x 1 000 граммов/1 килограмм = 10 x 1 000 граммов = 10 000 граммов.
      • Итак, дракон имеет 500 граммов золота и 10 000 граммов серебра.
      • Отношение массы золота к массе серебра составляет 500 граммов золота/10 000 граммов серебра = 5/100 = 1/20.
    3. Записывайте в решении задачи единицы измерения. В задачах с пропорциями намного легче найти ошибку в том случае, если записывать после каждой величины ее единицы измерения. Помните о том, что если в числителе и знаменателе стоят одинаковые единицы измерения, они сокращаются. После всех возможных сокращений в ответе должны получиться правильные единицы измерения.

      • Например: даны 6 коробок, и в каждых трех коробках находится 9 шариков; сколько всего шариков?
      • Неправильный метод: 6 коробок х 3 коробки/9 шариков = ... Хм, ничего не сокращается, и в ответе выходит “коробки x коробки / шарики“. Это не имеет смысла.
      • Правильный метод: 6 коробок х 9 шариков/3 коробки = 6 коробок х 3 шарика/1 коробка = 6 х 3 шарика/1 = 18 шариков.

С точки зрения математики, пропорцией является равенство двух отношений. Взаимозависимость характерна для всех частей пропорции, также как и их неизменный результат. Понять, как составить пропорцию можно, ознакомившись со свойствами и формулой пропорции. Чтобы разобраться с принципом решения пропорции, достаточным будет рассмотреть один пример. Только непосредственно решая пропорции, можно легко и быстро обучиться этим навыкам. А данная статья поможет читателю в этом.

Свойства пропорции и формула

  1. Обращение пропорции. В случае, когда заданное равенство выглядит как 1a: 2b =3c: 4d, записывают 2b: 1a = 4d: 3c. (Причем 1a, 2b, 3c и 4d являются простыми числами, отличными от 0).
  2. Перемножение заданных членов пропорции крест-накрест. В буквенном выражении это имеет такой вид: 1a: 2b = 3c: 4d, а запись 1a4d = 2b3c будет ему равносильна. Таким образом, произведение крайних частей любой пропорции (числа по краям равенства) всегда является равным произведению средних частей (чисел, расположенных посредине равенства).
  3. При составлении пропорции может пригодиться и такое её свойство, как перестановка крайних и средних членов. Формулу равенства 1a: 2b = 3c: 4d, можно отобразить такими вариантами:
    • 1a: 3c = 2b: 4d (когда переставляют средние члены пропорции).
    • 4d: 2b = 3c: 1a (когда переставляют крайние члены пропорции).
  4. Прекрасно помогает в решении пропорции её свойство увеличения и уменьшения. При 1a: 2b = 3c: 4d, записывают:
    • (1a + 2b) : 2b = (3c + 4d) : 4d (равенство по увеличению пропорции).
    • (1a – 2b) : 2b = (3c – 4d) : 4d (равенство по уменьшению пропорции).
  5. Составить пропорцию можно сложением и вычитанием. Когда пропорция записана как 1a: 2b = 3c: 4d, тогда:
    • (1a + 3с) : (2b + 4d) = 1a: 2b = 3c: 4d (пропорция составлена сложением).
    • (1a – 3с) : (2b – 4d) = 1a: 2b = 3c: 4d (пропорция составлена вычитанием).
  6. Также, при решении пропорции, содержащей дробные или большие числа, можно разделить или умножить оба её члена на одинаковое число. К примеру, составные части пропорции 70:40=320:60, можно записать так: 10*(7:4=32:6).
  7. Вариант решения пропорции с процентами выглядит так. К примеру, записывают, 30=100%, 12=x. Теперь следует перемножить средние члены (12*100) и разделить на известный крайний (30). Таким образом, получается ответ: x=40%. Подобным способом можно при необходимости совершать перемножение известных крайних членов и делить их на заданное среднее число, получая искомый результат.

Если Вас интересует конкретная формула пропорции, то в самом простом и распространенном варианте пропорция представляет собой такое равенство (формулу): a/b = c/d, в нем a, b, c и d являются отличными от нуля четырьмя числами.

§ 125. Понятие о пропорции.

Пропорцией называется равенство двух отношений. Вот примеры равенств, называемых пропорциями:

Примечание. Наименования величин в пропорциях не указаны.

Пропорции принято читать следующим образом: 2 так относится к 1 (единице), как 10 относится к 5 (первая пропорция). Можно читать иначе, например: 2 во столько раз больше 1, во сколько раз 10 больше 5. Третью пропорцию можно прочесть так: - 0,5 во столько раз меньше 2, во сколько раз 0,75 меньше 3.

Числа, входящие в пропорцию, называются членами пропорции . Значит, пропорция состоит из четырёх членов. Первый и последний члены, т. е. члены, стоящие по краям, называются крайними , а члены пропорции, находящиеся в середине, называются средними членами. Значит, в первой пропорции числа 2 и 5 будут крайними членами, а числа 1 и 10 - средними членами пропорции.

§ 126. Основное свойство пропорции.

Рассмотрим пропорцию:

Перемножим отдельно её крайние и средние члены. Произведение крайних 6 4 = 24, произведение средних 3 8 = 24.

Рассмотрим другую пропорцию: 10: 5 = 12: 6. Перемножим и здесь отдельно крайние и средние члены.

Произведение крайних 10 6 = 60, произведение средних 5 12 = 60.

Основное свойство пропорции: произведение крайних членов пропорции равно произведению средних её членов.

В общем виде основное свойство пропорции записывается так: ad = bc .

Проверим его на нескольких пропорциях:

1) 12: 4 = 30: 10.

Пропорция эта верна, так как равны отношения, из которых она составлена. Вместе с тем, взяв произведение крайних членов пропорции (12 10) и произведение средних её членов (4 30), мы увидим, что они равны между собой, т. е.

12 10 = 4 30.

2) 1 / 2: 1 / 48 = 20: 5 / 6

Пропорция верна, в чём легко убедиться, упростив первое и второе отношения. Основное свойство пропорции примет вид:

1 / 2 5 / 6 = 1 / 48 20

Нетрудно убедиться в том, что если мы напишем такое равенство, у которого в левой части стоит произведение двух каких-нибудь чисел, а в правой части произведение двух других чисел, то из этих четырёх чисел можно составить пропорцию.

Пусть у нас имеется равенство, в которое входят четыре числа, попарно перемноженные:

эти четыре числа могут быть членами пропорции, которую нетрудно написать, если принять первое произведение за произведение крайних членов, а второе - за произведение средних. Изданного равенства можно составить, например, такую пропорцию:

Вообще, из равенства ad = bc можно получить следующие пропорции:

Проделайте самостоятельно следующее упражнение. Имея произведение двух пар чисел, напишите пропорцию, соответствующую каждому равенству:

а) 1 6 = 2 3;

б) 2 15 = б 5.

§ 127. Вычисление неизвестных членов пропорции.

Основное свойство пропорции позволяет вычислить любой из членов пропорции, если он неизвестен. Возьмём пропорцию:

х : 4 = 15: 3.

В этой пропорции неизвестен один крайний член. Мы знаем, что во всякой пропорции произведение крайних членов равно произведению средних членов. На этом основании мы можем написать:

x 3 = 4 15.

После умножения 4 на 15 мы можем переписать это равенство так:

х 3 = 60.

Рассмотрим это равенство. В нём первый сомножитель неизвестен, второй сомножитель известен и произведение известно. Мы знаем, что для нахождения неизвестного сомножителя достаточно произведение разделить на другой (известный) сомножитель. Тогда получится:

х = 60: 3, или х = 20.

Проверим найденный результат подстановкой числа 20 вместо х в данную пропорцию:

Пропорция верна.

Подумаем, какие действия нам пришлось выполнить для вычисления неизвестного крайнего члена пропорции. Из четырёх членов пропорции нам был неизвестен только один крайний; два средних и второй крайний были известны. Для нахождения крайнего члена пропорции мы сначала перемножили средние члены (4 и 15), а затем найденное произведение разделили на известный крайний член. Сейчас мы покажем, что действия не изменились бы, если бы искомый крайний член пропорции стоял не на первом месте, а на последнем. Возьмём пропорцию:

70: 10 = 21: х .

Запишем основное свойство пропорции: 70 х = 10 21.

Перемножив числа 10 и 21, перепишем равенство в таком виде:

70 х = 210.

Здесь неизвестен один сомножитель, для его вычисления достаточно произведение (210) разделить на другой сомножитель (70),

х = 210: 70; х = 3.

Таким образом, мы можем сказать, что каждый крайний член пропорции равен произведению средних, делённому на другой крайний.

Перейдём теперь к вычислению неизвестного среднего члена. Возьмём пропорцию:

30: х = 27: 9.

Напишем основное свойство пропорции:

30 9 = х 27.

Вычислим произведение 30 на 9 и переставим части последнего равенства:

х 27 = 270.

Найдём неизвестный сомножитель:

х = 270: 27, или х = 10.

Проверим подстановкой:

30: 10 = 27: 9. Пропорция верна.

Возьмём ещё одну пропорцию:

12: б = х : 8. Напишем основное свойство пропорции:

12 . 8 = 6 х . Перемножая 12 и 8 и переставляя части равенства, получим:

6 х = 96. Находим неизвестный сомножитель:

х = 96: 6, или х = 16.

Таким образом, каждый средний член пропорции равен произведению крайних, делённому на другой средний.

Найдите неизвестные члены следующих пропорций:

1) а : 3= 10:5; 3) 2: 1 / 2 = x : 5;

2) 8: b = 16: 4; 4) 4: 1 / 3 = 24: х .

Два последних правила в общем виде можно записать так:

1) Если пропорция имеет вид:

х: а = b: с , то

2) Если пропорция имеет вид:

а: х = b: с , то

§ 128. Упрощение пропорции и перестановка её членов.

В настоящем параграфе мы выведем правила, позволяющие упрощать пропорцию в том случае, когда в неё входят большие числа или дробные члены. K числу преобразований, не нарушающих пропорцию, относятся следующие:

1. Одновременное увеличение или уменьшение обоих членов любого отношения в одинаковое число раз.

П р и м е р. 40: 10 = 60: 15.

Увеличив в 3 раза оба члена первого отношения, получим:

120:30 = 60: 15.

Пропорция не нарушилась.

Уменьшив в 5 раз оба члена второго отношения, получим:

Получили опять правильную пропорцию.

2. Одновременное увеличение или уменьшение обоих предыдущих или обоих последующих членов в одинаковое число раз.

Пример. 16:8 = 40:20.

Увеличим в 2 раза предыдущие члены обоих отношений:

Получили правильную пропорцию.

Уменьшим в 4 раза последующие члены обоих отношений:

Пропорция не нарушилась.

Два полученных вывода можно кратко высказать так: Пропорция не нарушится, если мы одновременно увеличим или уменьшим в одинаковое число раз любой крайний член пропорции и любой средний.

Например, уменьшив в 4 раза 1-й крайний и 2-й средний члены пропорции 16:8 = 40:20, получим:

3. Одновременное увеличение или уменьшение всех членов пропорции в одинаковое число раз. Пример. 36:12 = 60:20. Увеличим все четыре числа в 2 раза:

Пропорция не нарушилась. Уменьшим все четыре числа в 4 раза:

Пропорция верна.

Перечисленные преобразования дают возможность, во-первых, упрощать пропорции, а во-вторых, освобождать их от дробных членов. Приведём примеры.

1) Пусть имеется пропорция:

200: 25 = 56: x .

В ней членами первого отношения являются сравнительно большие числа, и если бы мы пожелали найти значение х , то нам пришлось бы выполнять вычисления над этими числами; но мы знаем, что пропорция не нарушится, если оба члена отношения разделить на одно и то же число. Разделим каждый из них на 25. Пропорция примет вид:

8:1 = 56: x .

Мы получили, таким образом, более удобную пропорцию, из которой х можно найти в уме:

2) Возьмём пропорцию:

2: 1 / 2 = 20: 5.

В этой пропорции есть дробный член (1 / 2), от которого можно освободиться. Для этого придётся умножить этот член, например, на 2. Но о д и н средний член пропорции мы не имеем права увеличивать; нужно вместе с ним увеличить какой-нибудь из крайних членов; тогда пропорция не нарушится (на основании первых двух пунктов). Увеличим первый из крайних членов

(2 2) : (2 1 / 2) = 20: 5, или 4: 1 = 20:5.

Увеличим второй крайний член:

2: (2 1 / 2) = 20: (2 5), или 2: 1 = 20: 10.

Рассмотрим ещё три примера на освобождение пропорции от дробных членов.

Пример 1. 1 / 4: 3 / 8 = 20:30.

Приведём дроби к общему знаменателю:

2 / 8: 3 / 8 = 20: 30.

Умножив на 8 оба члена первого отношения, получим:

Пример 2. 12: 15 / 14 = 16: 10 / 7 . Приведём дроби к общему знаменателю:

12: 15 / 14 = 16: 20 / 14

Умножим оба последующих члена на 14, получим: 12:15 = 16:20.

Пример 3. 1 / 2: 1 / 48 = 20: 5 / 6 .

Умножим все члены пропорции на 48:

24: 1 = 960: 40.

При решении задач, в которых встречаются какие-нибудь пропорции, часто приходится для разных целей переставлять члены пропорции. Рассмотрим, какие перестановки являются законными, т. е. не нарушающими пропорции. Возьмём пропорцию:

3: 5 = 12: 20. (1)

Переставив в ней крайние члены, получим:

20: 5 = 12:3. (2)

Переставим теперь средние члены:

3:12 = 5: 20. (3)

Переставим одновременно и крайние, и средние члены:

20: 12 = 5: 3. (4)

Все эти пропорции верны. Теперь поставим первое отношение на место второго, а второе - на место первого. Получится пропорция:

12: 20 = 3: 5. (5)

В этой пропорции мы сделаем те же перестановки, какие делали раньше, т. е. переставим сначала крайние члены, затем средние и, наконец, одновременно и крайние, и средние. Получатся ещё три пропорции, которые тоже будут справедливыми:

5: 20 = 3: 12. (6)

12: 3 = 20: 5. (7)

5: 3 = 20: 12. (8)

Итак, из одной данной пропорции путём перестановки можно получить ещё 7 пропорций, что вместе с данной составляет 8 пропорций.

Особенно легко обнаруживается справедливость всех этих пропорций при буквенной записи. Полученные выше 8 пропорций принимают вид:

а: b = с: d; c: d = a: b ;

d: b = с: a; b: d = a: c;

a: c = b: d; c: a = d: b;

d: c = b: a; b: a = d: c.

Легко видеть, что в каждой из этих пропорций основное свойство принимает вид:

ad = bc.

Таким образом, указанные перестановки не нарушают справедливости пропорции и ими можно пользоваться в случае надобности.

Умение вычисления процента от числа, когда нужно узнать пеню за просрочку, размер переплаты по кредиту или прибыль компании, если известен ее оборот и наценка.

  • Как найти число по его проценту?

Правило. Чтобы найти число по его указанному проценту, нужно заданное число разделить на заданную величину процента, а результат умножить на 100.

Таким вычислением сначала определим, сколько единиц этого числа содержится в 1%, а потом — в целом числе (в 100%).

Например:
Число, 23% которого составляют 52, находится так:
52: 23 * 100 = 226.1

Значит, если число 226,1 равно 100%, то число 52 равно 23% от этого числа.

Число, 125% которого составляют 240, находим так:
240: 125 * 100 = 192.

При определении числа по его проценту следует помнить, что:

— если процент меньше 100%, то число, полученное в результате вычислений, больше заданного числа (если 23% < 100%, то 226,1 > 52);
— если процент больше 100%, то число, полученное в результате вычислений, меньше заданного числа (если 125% > 100%, то 192 < 240).

Следовательно, при вычислении числа по его проценту для самоконтроля нужно проверить:

— заданный в условии процент больше или меньше 100%;
— результат вычисления больше или меньше заданного числа.

  • Как узнать процент от суммы в общем случае?

После этого есть два варианта:

  1. Если нужно узнать, сколько процентов составляет другая сумма от первоначальной, нужно просто разделить ее на размер 1%, полученный ранее.
  2. Если же нужен размер суммы, которая составляет, скажем, 27,5% от первоначальной, нужно размер 1% умножить на требуемое количество процентов.
  • Как высчитать процент от суммы с помощью пропорции?

Для этого придется использовать знания о методе пропорций, который проходят в рамках школьного курса математики. Это будет выглядеть так:

ПустьА — основная сумма, равная 100%, и В — сумма, соотношение которой с А в процентах нам нужно узнать. Записываем пропорцию:

(Х в данном случае — число процентов).

По правилам расчета пропорций мы получаем следующую формулу:

Х = 100 * В / А

Если же нужно узнать, сколько будет составлять сумма В при уже известном числе процентов от суммы А, формула будет выглядеть по-другому:

В = 100 * Х / А

Теперь остается подставить в формулу известные числа — и можно производить расчет.

  • Как рассчитать процент от суммы с помощью известных соотношений?

Наконец, можно воспользоваться и более простым способом. Для этого достаточно помнить, что 1% в виде десятичной дроби — это 0,01. Соответственно, 20% — это 0,2; 48% — 0,48; 37,5% — это 0,375 и т.д. Достаточно умножить исходную сумму на соответствующее число — и результат будет означать размер процентов.

Кроме того, иногда можно воспользоваться и простыми дробями. Например, 10% — это 0,1, то есть 1/10 следовательно, узнать, сколько составят 10%, просто: нужно всего лишь разделить исходную сумму на 10.

Другими примерами таких соотношений будут:

  1. 12,5% — 1/8, то есть нужно делить на 8;
  2. 20% — 1/5, то есть нужно разделить на 5;
  3. 25% — 1/4, то есть делим на 4;
  4. 50% — 1/2, то есть нужно разделить пополам;
  5. 75% — 3/4, то есть нужно разделить на 4 и умножить на 3.

Правда, не все простые дроби удобны для расчета процентов. К примеру, 1/3 близка по размерам к 33%, но не равна точно: 1/3 — это 33,(3)% (то есть дробь с бесконечными тройками после запятой).

  • Как вычесть процент от суммы без помощи калькулятора?

Если же требуется от уже известной суммы отнять неизвестное число, составляющее какое-то количество процентов, можно воспользоваться следующими методами:

  1. Вычислить неизвестное число с помощью одного из приведенных выше способов, после чего отнять его от исходного.
  2. Сразу рассчитать остающуюся сумму. Для этого от 100% отнимаем то число процентов, которое нужно вычесть, и полученный результат переводим из процентов в число любым из описанных выше способов.

Второй пример удобнее, поэтому проиллюстрируем его. Допустим, надо узнать, сколько останется, если от 4779 отнять 16%. Расчет будет таким:

  1. Отнимаем от 100 (общее количество процентов) 16. Получаем 84.
  2. Считаем, сколько составит 84% от 4779. Получаем 4014,36.
  • Как высчитать (отнять) из суммы процент с калькулятором в руках?

Все вышеприведенные вычисления проще делать, используя калькулятор. Он может быть как в виде отдельного устройства, так и в виде специальной программы на компьютере, смартфоне или обычном мобильнике (даже самые старые из ныне используемых устройств обычно имеют эту функцию). С их помощью вопрос, как высчитать процент из суммы, решается очень просто:

  1. Набирается исходная сумма.
  2. Нажимается знак «-».
  3. Вводится число процентов, которое требуется вычесть.
  4. Нажимается знак «%».
  5. Нажимается знак «=».

В итоге на экране высвечивается искомое число.

  • Как отнять от суммы процент с помощью онлайн-калькулятора?

Наконец, сейчас в сети достаточно сайтов, где реализована функция онлайн-калькулятора. В этом случае даже не требуется знания того, как посчитать процент от суммы : все операции пользователя сводятся к вводу в окошки нужных цифр (или передвижению ползунков для их получения), после чего результат сразу высвечивается на экране.

Особенно эта функция удобна тем, кто рассчитывает не просто абстрактный процент, а конкретный размер налогового вычета или сумму госпошлины. Дело в том, что в этом случае вычисления сложнее: требуется не только найти проценты, но и прибавить к ним постоянную часть суммы. Онлайн-калькулятор позволяет избежать подобных добавочных вычислений. Главное — выбрать сайт, пользующийся данными, которые соответствуют действующему закону.

Онлайн-калькулятор процентов:

calculator.ru — позволяет выполнять разнообразные расчеты при работе с процентами;

mirurokov.ru — калькуляятор процентов;

Источник информации:

  • nsovetnik.ru — статьяя о том, как высчитать процент от суммы;

Сегодня мы продолжаем серию видеоуроков, посвященных задачам на проценты из ЕГЭ по математике. В частности, разберем две вполне реальных задачи из ЕГЭ и еще раз убедимся, насколько важно внимательно читать условие задачи и правильно его интерпретировать.

Итак, первая задача:

Задача. Только 95% и 37 500 выпускников города правильно решили задачу B1. Сколько человек правильно решили задачу B1?

На первый взгляд кажется, что это какая-то задача для кэпов. Наподобие:

Задача. На дереве сидело 7 птичек. 3 из них улетело. Сколько птичек улетело?

Тем не менее, давай все-таки сосчитаем. Решать будем методом пропорций. Итак, у нас есть 37 500 учеников — это 100%. А также есть некое число x учеников, которое составляет 95% тех самых счастливчиков, которые правильно решили задачу B1. Записываем это:

37 500 — 100%
X — 95%

Нужно составить пропорцию и найти x . Получаем:

Перед нами классическая пропорция, но прежде чем воспользоваться основным свойством и перемножить ее крест-накрест, предлагаю разделить обе части уравнения на 100. Другими словами, зачеркнем в числителе каждой дроби по два нуля. Перепишем полученное уравнение:

По основному свойству пропорции, произведение крайних членов равно произведению средних членов. Другими словами:

x = 375 · 95

Это довольно большие числа, поэтому придется умножать их столбиком. Напоминаю, что пользоваться калькулятором на ЕГЭ по математике категорически запрещено. Получим:

x = 35 625

Итого ответ: 35 625. Именно столько человек из исходных 37 500 решили задачу B1 правильно. Как видите, эти числа довольно близки, что вполне логично, потому что 95% тоже очень близки к 100%. В общем, первая задача решена. Переходим к второй.

Задача на проценты №2

Задача. Только 80% из 45 000 выпускников города правильно решили задачу B9. Сколько человек решили задачу B9 неправильно?

Решаем по той же самой схеме. Изначально было 45 000 выпускников — это 100%. Затем из этого количества надо выбрать x выпускников, которые должны составить 80% от исходного количества. Составляем пропорцию и решаем:

45 000 — 100%
x — 80%

Давайте сократим по одному нулю в числителе и знаменателе 2-й дроби. Еще раз перепишем полученную конструкцию:

Основное свойство пропорции: произведение крайних членов равно произведению средних. Получаем:

45 000 · 8 = x · 10

Это простейшее линейное уравнение. Выразим из него переменную x :

x = 45 000 · 8: 10

Сокращаем по одному нулю у 45 000 и у 10, в знаменателе остается единица, поэтому все, что нам нужно — это найти значение выражения:

x = 4500 · 8

Можно, конечно, поступить так же, как в прошлый раз, и перемножить эти числа столбиком. Но давайте не будем сами себе усложнять жизнь, и вместо умножения столбиком разложим восьмерку на множители:

x = 4500 · 2 · 2 · 2 = 9000 · 2 · 2 = 36 000

А теперь — самое главное, о чем я говорил в самом начале урока. Нужно внимательно читать условие задачи!

Что от нас требуется узнать? Сколько человек решили задачу B9 неправильно . А мы только что нашли тех людей, которые решили правильно. Таких оказалось 80% от исходного числа, т.е. 36 000. Это значит, что для получения окончательного ответа надо вычесть из исходной численности учеников наши 80%. Получим:

45 000 − 36 000 = 9000

Полученное число 9000 — это и есть ответ к задаче. Итого в этом городе из 45 000 выпускников 9000 человек решили задачу B9 неправильно. Все, задача решена.



Похожие статьи
 
Категории