Строение и основные свойства нейрона. Что такое нейроны? Двигательные нейроны: описание, строение и функции

11.10.2019

Нейрон - это основная структурная и фун­кциональная единица нервной системы. Нейроном называют нерв­ную клетку с отростками (цвет. табл. III, А). В нем различают тело клетки, или сому, один длинный, мало ветвящийся отросток - аксон и много (от 1 до 1000) коротких, сильно ветвящихся отрост­ков- дендритов. Длина аксона достигает метра и более, его диа­метр колеблется от сотых долей микрона (мкм) до 10 мкм; длина дендрита может достигать 300 мкм, а его диаметр - 5 мкм.

Аксон, выходя из сомы клетки, постепенно суживается, от него отходят отдельные отростки - коллатерали. На протяжении первых 50-100 мкм от тела клетки аксон не покрыт миелиновой оболочкой. Прилегающий к нему участок тела клетки называют аксонным хол­миком. Участок аксона, не покрытый миелиновой оболочкой, вместе с аксонным холмиком называют начальным сегментом аксона. Эти участки отличаются рядом морфологических и функциональных особенностей.

По дендритам возбуждение приходит от рецепторов или дру­гих нейронов к телу клетки, а аксон передает возбуждение от одно­го нейрона к другому или рабочему органу. На дендритах имеются боковые отростки (шипики), которые увеличивают их поверхность и являются местами наибольших контактов с другими нейронами. Конец аксона сильно ветвится, один аксон может контактировать с 5 тыс. нервных клеток и создавать до 10 тыс. контактов (рис. 26, А).

Место контакта одного нейрона с другим получило название синапса (от греческого слова «синапто» - контактировать). По внешнему виду синапсы имеют форму пуговки, луковицы, петли и др.

Количество синаптических контактов неодинаково на телœе и отростках нейрона и очень вариабильно в различных отделах цент­ральной нервной системы. Тело нейрона на 38% покрыто синапса­ми, и их насчитывают до 1200-1800 на одном нейроне. Много синапсов на дендритах и шипиках, их количество невелико на аксонном холмике.

Все нейроны центральной нервной системы соединяются друг с другом в основном в одном направлении : разветвления аксона одного нейрона контактируют с телом клетки и дендритами другого нейрона.

Тело нервной клетки в различных отделах нервной системы име­ет разную величину (диаметр его колеблется от 4 до 130 мкм) и форму (округлую, уплощенную, многоугольную, овальную). Оно покрыто сложно устроенной мембраной и содержит органеллы, свойственные любой другой клетке: в цитоплазме находятся ядро с одним или несколькими ядрышками, митохондрии, рибосомы, аппа­рат Гольджи, эндоплазматическая сеть и др.

Характерной особенностью строения нервной клетки является наличие гранулярного ретикулума с большим количеством рибосом и нейрофибрилл. С рибосомами в нервных клетках связывают высо­кий уровень обмена веществ, синтез белка и РНК.

В ядре содержится генетический материал - дезоксирибонуклеи-новая кислота (ДНК), которая регулирует состав РНК сомы ней­рона. РНК в свою очередь определяет количество и тип белка, син­тезируемого в нейроне.

Нейрофибриллы представляют собой тончайшие волоконца, пересекающие тело клетки во всœех направлениях (рис. 26, Б) и про­должающиеся в отростки.

Нейроны различают по строению и функции. По строению (в за­висимости от количества отходящих от тела клетки отростков) различают униполярные (с одним отростком), биполярные (с двумя отростками) и мультиполярные (с множеством отростков) нейроны.

По функциональным свойствам выделяют афферентные (или центростремительные) нейроны, несущие возбуждение от рецепто­ров в центральную нервную систему, эфферентные, двигательные, мотонейроны (или центробежные), передающие возбуждение из центральной нервной системы к иннервируемому органу, и вставоч­ные, контактные или промежуточные нейроны, соединяющие между собой афферентные и эфферентные пути.

Афферентные нейроны относятся к униполярным, их тела лежат в спинномозговых ганглиях. Отходящий от тела клетки отросток Т-образно делится на две ветви, одна из которых идет в централь­ную нервную систему и выполняет функцию аксона, а другая под­ходит к рецепторам и представляет собой длинный дендрит.

Большинство эфферентных и вставочных нейронов относится к мультиполярным. Мультиполярные вставочные нейроны в большом количестве располагаются в задних рогах спинного мозга, находят­ся и во всœех других отделах центральной нервной системы. Οʜᴎ бывают и биполярными, как к примеру нейроны сетчатки, имею­щие короткий ветвящийся дендрит и длинный аксон. Мотонейроны располагаются в основном в передних рогах спинного мозга.

Нейрон – структурно-функциональная единица нервной системы, представляет собой электрически возбудимую клетку, которая обрабатывает и передает информацию посредством электрических и химических сигналов.

Развитие нейрона.

Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, аналогичные имеющимся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.



Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Нервная клетка - нейрон - является структурной и функциональной единицей нервной системы. Нейрон - клетка, способная воспринимать раздражение, приходить в состояние возбуждения, вырабатывать нервные импульсы и передавать их другим клеткам. Нейрон состоит из тела и отростков - коротких, ветвящихся (дендритов) и длинного (аксона). Импульсы всегда движутся по дендритам к клетке, а по аксону - от клетки.

Виды нейронов

Нейроны, передающие импульсы в центральную нервную систему (ЦНС), называются сенсорными или афферентными . Моторные, или эфферентные, нейроны передают импульсы от ЦНС к эффекторам, например к мышцам. Те и другие нейроны могут связываться между собой с помощью вставочных нейронов (интернейронов). Последние нейроны еще называются контактными или промежуточ­ными .

В зависимости от числа и рас­положения отростков нейроны делятся на униполярные, биполярные и мультиполярные .

Строение нейрона

Нервная клетка (нейрон) со­стоит из тела (перикариона ) с ядром и нескольких отростков (рис. 33).

Перикарион является метаболическим центром, в кото­ром протекает большинство син­тетических процессов, в частно­сти, синтез ацетилхолина. В теле клетки есть рибосомы, микротру­бочки (нейротрубочки) и другие органоиды. Нейроны формируют­ся из клеток-нейробластов, кото­рые еще не имеют выростов. От тела нервной клетки отходят ци­топлазматические отростки, число которых может быть различным.

Короткие ветвящиеся отростки , проводящие импульсы к телу клетки, называются дендритами . Тонкие и длинные отростки, прово­дящие импульсы от перикариона к другим клеткам или перифериче­ским органам, называются аксонами . Когда в процессе формирования нервных клеток из нейробластов происходит отрастание аксонов, спо­собность нервных клеток делиться утрачивается.

Концевые участки аксона способны к нейросекреции. Их тонкие веточки со вздутиями на концах соединяются с соседними нейронами в специальных местах - синапсах. Вздутые окончания содержат мел­кие пузырьки, наполненные ацетилхолином, играющим роль нейромедиатора. Есть в пузырьках и ми­тохондрии (рис. 34). Разветвлен­ные отростки нервных клеток пронизывают весь организм жи­вотного и образуют сложную систему связей. На синапсах возбуждение передается от ней­рона к нейрону или к мышечным клеткам. Материал с сайтаhttp://doklad-referat.ru

Функции нейронов

Основная функция нейронов - обмен информации (нервными сигналами) между частями тела. Нейроны восприим­чивы к раздражению, т. е. способны возбуждаться (генерировать возбуждение), проводить возбуждения и, наконец, передавать его дру­гим клеткам (нервным, мышечным, железистым). По нейронам прохо­дят электрические импульсы, и это делает возможной коммуни­кацию между рецепторами (клетками или органами, воспринимаю­щими раздражение) и эффекторами (тканями или органами, отвечаю­щими на раздражение, например мышцами).

Нейроны отличаются большой сложностью строения. Размеры клеток чрезвычайно разнообразны (от 4-6 мкм до 130 мкм). Форма нейрона также очень вариабильна, но всем нервным клеткам свойственны отростки (один или несколько), отходящие от тела. У человека содержится более триллиона (10) нервных клеток.

На строго определенных этапах онтогенеза запрограммирована массовая гибель нейронов центральной и периферической нервной системы. За 1 год жизни погибает около 10 млн. нейронов, а в течение жизни мозг теряет около 0,1 % всех нейронов. Гибель определяет ряд факторов:

    выживают наиболее активно участвующие в межклеточных взаимодействиях нейрона (быстрее растут, имеют больше отростков, больше контактов с клетками – мишенями).

    имеются гены, ответственные за выход между жизнью или смертью.

    сбои в кровоснабжении.

По количеству отростков нейроны делятся на:

      униполярные – одноотростчатые,

      биполярные – двуотростчатые,

      мультиполярные – многоотростчатые.

Среди униполярных нейронов различают истинные униполяры,

лежащие в сетчатке глаза, и ложные униполяры, расположенные в спинномозговых узлах. Ложные униполяры в процессе развития были биполярными клетками, но затем произошло вытягивание части клетки в длинный отросток, который часто делает несколько оборотов вокруг тела и затем Т- образно ветвится.

Отростки нервных клеток отличаются по строению, у каждой нервной клетки есть аксон или нейрит, который идет от тела клетки в виде тяжа, имеющего одинаковую по всей длине толщину. Часто аксоны идут на большие расстояния. По ходу нейрита отходят тонкие веточки – коллатерали. Аксон, передающий отросток и импульс в нем, идет от клетки на периферию. Заканчивается аксон эффектором или двигательным окончанием в мышечной или железистой ткани. Длина аксона может быть более 100 см. В аксоне нет эндоплазматической сети и свободных рибосом, поэтому все белки секретируются в теле, а затем транспортируются по аксону.

Другие отростки начинаются от тела клетки широким основанием и сильно ветвятся. Они называются древовидными отростками или дендритами и являются воспринимающими отростками, в которых импульс распространяется к телу клетки. Дендриты заканчиваются чувствительными нервными окончаниями или рецепторами, специфически воспринимающими раздражения.

Истинные униполярные нейроны имеют только один аксон, а восприятие импульсов осуществляется всей поверхностью клетки. Единственным примером унипотентных клеток у человека являются амокриновые клетки сетчатки.

Биполярные нейроны лежат в сетчатке глаза и имеют аксон и один ветвящийся отросток – дендрит

Многоотросчатые мультиполярные нейроны широко распространены и лежат в спинном и головном мозге, вегетативных нервных узлах и т.д. Эти клетки имеют один аксон и многочисленные ветвящиеся дендриты.

В зависимости от расположения нейроны делятся на центральные, лежащие в головном и спинном мозге, и периферические – это невроны вегетативных ганглий, органных нервных сплетений и спинномозговых узлов.

Нервные клетки тесно взаимодействуют с сосудами. Различают 3 варианта взаимодействия:

Нервные клетки в организме лежат в виде цепей, т.е. одна клетка контактирует с другой и передает на нее свой импульс. Такие цепи клеток называются рефлекторными дугами. В зависимости от положения нейронов в рефлекторной дуге они имеют различную функцию. По функции невроны могут быть чувствительными, двигательными, ассоциативными и вставочными. Между собой или с органом – мишенью нервные клетки взаимодействуют с помощью химических веществ – нейромидиаторов.

Активность нейрона может быть индуцирована импульсом от другого нейрона или быть спонтанной. В этом случае нейрон играет роль пейсмекера (водителя ритма). Такие нейроны имеются в ряде центров, в том числе дыхательном.

Первым воспринимающим нейроном в рефлекторной дуге является чувствительная клетка. Раздражение воспринимается рецептором – чувствительным окончанием, по дендриту импульс достигает тела клетки, а затем передается по аксону на другой нейрон. Команда к действию на рабочий орган передается двигательным или эффекторным нейроном. Эффекторный нейрон может получить импульс непосредственно от чувствительной клетки, тогда рефлекторная дуга будет состоять из двух нейронов.

В более сложных рефлекторных дугах есть среднее звено – вставочный нейрон. Он воспринимает импульс от чувствительной клетки и передает на двигательную.

Иногда несколько клеток с одинаковой функцией (чувствительные или двигательные) объединяются одним нейроном, который концентрирует в себе импульсы с нескольких клеток – это ассоциативные невроны. Эти нейроны передают импульс дальше на вставочные или на эффекторные нейроны.

В теле нейрона у большинства нервных клеток содержится одно ядро. Многоядерные нервные клетки свойственны некоторым периферическим ганглиям вегетативной нервной системы. На гистологических препаратах ядро нервной клетки имеет вид светлого пузырька с четко различимым ядрышком и немногочисленными глыбками хроматина. При электронной микроскопии обнаруживаются те же субмикроскопические компоненты, что и в ядрах других клеток. Ядерная оболочка имеет многочисленные поры. Хроматин распылен. Такая структура ядра характерна для активных в метаболическом отношении ядерных аппаратов.

Ядерная оболочка в процессе эмбриогенеза образует глубокие складки, заходящие в кариоплазму. К моменту рождения складчатость становится значительно меньше. У новорожденного наблюдается уже преобладание объема цитоплазмы над ядром, так как в период эмбриогенеза эти отношения обратные.

Цитоплазма нервной клетки носит название нейроплазмы. В ней располагаются органоиды и включения.

Аппарат Гольджи был впервые обнаружен в нервных клетках. Он имеет вид сложной корзинки, окружающей ядро со всех сторон. Это своеобразный диффузный тип аппарата Гольджи. При электронной микроскопии он состоит из крупных вакуолей, мелких пузырьков и пакетов двойных мембран, образующих анастомозирующую сеть вокруг ядерного аппарата нервной клетки. Однако чаще всего аппарат Гольджи располагается между ядром и местом отхождения аксона – аксонный холмик. Аппарат Гольджи является местом генерации потенциала действия.

Митохондрии имеют вид очень коротких палочек. Они обнаруживаются в теле клетки и во всех отростках. В концевых разветвлениях нервных отростков, т.е. в нервных окончаниях наблюдается их скопление. Ультраструктура митохондрий типична, но их внутренняя мембрана не образует большого количества крист. Они очень чувствительны к гипоксии. Впервые митохондрии описал в мышечных клетках Келликер более 100 лет назад. В некоторых нейронах между кристами митохондрий имеются анастамозы. Количество крист и их общая поверхность прямо связаны с интенсивностью их дыхания. Необычным является накопление митохондрий в нервных окончаниях. В отростках они ориентируются своей продольной осью по ходу отростков.

Клеточный центр в нервных клетках состоит из 2-ух центриолей, окруженных светлой сферой, и выражен в молодых нейронах значительно лучше. В зрелых нейронах клеточный центр обнаруживается с трудом и во взрослом организме центросома претерпевает дегенеративные изменения.

При окрашивании нервных клеток толуоидным синим в цитоплазме обнаруживаются глыбки различных размеров – базофильное вещество, или субстанция Ниссля. Это очень нестойкое вещество: при общей усталости в следствии длительной работы или нервного возбуждения глыбки вещества Ниссля исчезают. Гистохимически в глыбках была обнаружена РНК и гликоген. Электронно-микроскопические исследования показали, что глыбки Ниссля представляют собой эндоплазматическую сеть. На мембранах эндоплазматической сети много рибосом. В нейроплазме так же много и свободных рибосом, образующих розеткообразные скопления. Развитая гранулярная эндоплазматическая сеть обеспечивает синтез большого количества белка. Синтез белка наблюдается только в теле нейрона и в дендритах. Для нервных клеток характерен высокий уровень синтетических процессов и в первую очередь белку и РНК.

В сторону аксона и по аксону наблюдается постоянный ток полужидкого содержимого нейрона, движущегося на периферию нейрита со скоростью 1-10 мм в сутки. Помимо медленного перемещения нейроплазмы обнаружен и быстрый ток (от 100 до 2000 мм в сутки), он имеет универсальный характер. Быстрый ток зависит от процессов окислительного фосфорилирования, наличия кальция и нарушается при разрушении микротрубочек и нейрофиламентов. Быстрым транспортом переносятся холинэстераза, аминокислоты, митохондрии, нуклеотиды. Быстрый транспорт тесно связан с подачей кислорода. Через 10 минут после смерти прекращается движение в периферическом нерве млекопитающих. Для патологии существование аксоплазматического движения имеет значение в том смысле, что по аксону могут распространяться различные инфекционные агенты, как из периферии организма в центральную нервную систему, так и внутри ее. Непрерывный аксоплазматический транспорт является активным процессом, требующим затрат энергии. Некоторые вещества обладают способностью перемещаться по аксону в обратном направлении (ретроградный транспорт) : ацетилхолинэстераза, вирус полиомиэлита, вирус герпеса, столбнячный токсин, который вырабатывается бактериями, попавшими в кожную рану, по аксону достигает центральной нервной системы и вызывает судороги.

У новорожденного нейроплазма бедна глыбками базофильного вещества. С возрастом наблюдается увеличение числа и размеров глыбок.

Специфическими структурами нервных клеток являются также нейрофибриллы и микротрубочки. Нейрофибриллы обнаруживаются в нейронах при фиксации и в теле клетки имеют беспорядочное расположение в виде войлока, а в отростках лежат параллельно друг другу. В живых клетках они были найдены при помощи фазово-контрольной киносъёмки.

При электронной микроскопии в цитоплазме тела и отростков находят гомогенные нити нейропротофибриллы, состоящие из нейрофиламентов. Нейрофиламенты это фибриллярные структуры диаметром от 40 до 100 А. Они состоят из спирально закрученных нитей, представленных белковыми молекулами весом 80000. Нейрофибриллы возникают при пучковой агрегации существующих прижизненно нейропротофибрилл. Одно время нейрофибриллам приписывали функцию проведения импульсов, но оказалось, что после перерезки нервного волокна проводимость сохраняется даже тогда, когда нейрофибриллы уже дегенерируют. Очевидно, основная роль в процессе проведения импульса принадлежит межфибриллярной нейроплазмы. Таким образом, функциональное значение нейрофибрилл не ясно.

Микротрубочки представляют собой цилиндрические образования. Их сердцевина обладает низкой электронной плотностью. Стенки образованы 13 ориентированными продольно фибриллярными субъединицами. Каждая фибрилла в свою очередь состоит из мономеров, которые агрегируют и образуют вытянутую фибриллу. Большинство микротрубочек располагается в отростках продольно. По микротрубочкам осуществляется транспорт веществ (белков, нейромедиаторов), органоидов (митохондрий, везикул), ферменты синтеза медиаторов.

Лизосомы в нервных клетках мелкие, их мало, и структуры их не отличаются от других клеток. Они содержат высоко активную кислую фосфотазу. Лизосомы лежат в основном в теле нервных клеток. При дегенеративных процессах, в нейронах число лизосом возрастает.

В нейроплазме нервных клеток обнаруживаются включения пигмента и гликогена. В нервных клетках находят два вида пигментов – это липофусцин, имеющий бледно-жёлтый или зеленовато-жёлтый цвет, и меланин – пигмент тёмно-бурого или коричневого цвета (например, черное вещество –substantianigraв ножках мозга).

Меланин обнаруживается в клетках очень рано – к концу первого года жизни.Липофусцин

накапливается позднее, но к 30 годам он может быть выявлен почти во всех клетках. Пигменты типа липофусцина играют важную роль в обменных процессах. Пигменты относящиеся к хромотопротеидам, являются катализаторами в окислительно-восстановительных процессах. Они являются древней окислительно-восстановительной системой нейроплазмы.

Гликоген накапливается, в нейроне в период относительного покоя в областях распространения вещества Ниссля. Гликоген содержится в телах и проксимальных отрезках дендритов. Аксоны лишены полисахаридов. В нервных клетках содержатся и ферменты: оксидаза, фосфатаза и холинэстераза. Специфическим белком аксоплазмы является нейромодулин.

Главный компонент мозга человека или другого млекопитающего – нейрон (другое название – неврон). Именно эти клетки образуют нервную ткань. Наличие невронов помогает приспособиться к условиям окружающей среды, чувствовать, мыслить. С их помощью передается сигнал в нужный участок тела. Для этой цели используются нейромедиаторы. Зная строение нейрона, его особенности, можно понять суть многих заболеваний и процессов в тканях мозга.

В рефлекторных дугах именно нейроны отвечают за рефлексы, регуляцию функций организма. Трудно найти в организме другой вид клеток, который отличался бы таким многообразием форм, размеров, функций, строения, реактивности. Мы выясним каждое различие, проведем их сравнение. В нервной ткани содержатся нейроны и нейроглия. Подробно рассмотрим строение и функции нейрона.

Благодаря своему строению нейрон является уникальной клеткой с высокой специализацией. Он не только проводит электрические импульсы, но и генерирует их. В ходе онтогенеза нейроны утратили возможность размножаться. При этом в организме присутствуют разновидности нейронов, каждой из которых отводится своя функция.

Нейроны покрыты крайне тонкой и при этом очень чувствительной мембраной. Ее называют нейролеммой. Все нервные волокна, а точнее их аксоны, покрыты миелином. Миелиновая оболочка состоит из глиальных клеток. Контакт между двумя нейронами называется синапс.

Строение

Внешне нейроны очень необычны. У них есть отростки, количество которых может варьироваться от одного до множества. Каждый участок выполняет свою функцию. По форме нейрон напоминает звезду, которая находится в постоянном движении. Его формируют:

  • сома (тело);
  • дендриты и аксоны (отростки).

Аксон и дендрит есть в строении любого нейрона взрослого организма. Именно они проводят биоэлектрические сигналы, без которых не могут происходить никакие процессы в человеческом теле.

Выделяют разные виды нейронов. Их отличие кроется в форме, размере, количестве дендритов. Мы подробно рассмотрим строение и виды нейронов, разделение их на группы, проведем сравнение типов. Зная виды нейронов и их функции, легко понять, как устроен мозг и ЦНС.

Анатомия невронов отличается сложностью. Каждый вид имеет свои особенности строения, свойства. Ими заполнено все пространство головного и спинного мозга. В теле каждого человека встречается несколько видов. Они могут участвовать в разных процессах. При этом данные клетки в процессе эволюции утратили способность к делению. Их количество и связь относительно стабильны.

Нейрон – это конечный пункт, который подает и принимает биоэлектрический сигнал. Эти клетки обеспечивают абсолютно все процессы в теле и имеют первостепенную важность для организма.

В теле нервных волокон содержится нейроплазма и чаще всего одно ядро. Отростки специализируются на определенных функциях. Они делятся на два вида – дендриты и аксоны. Название дендритов связано с формой отростков. Они действительно похожи на дерево, которое сильно ветвится. Размер отростков – от пары микрометров до 1-1,5 м. Клетка с аксоном без дендритов встречается только на стадии эмбрионального развития.

Задача отростков – воспринимать поступающие раздражения и проводить импульс к телу непосредственно нейрона. Аксон нейрона отводит от его тела нервные импульсы. У неврона лишь один аксон, но он может иметь ветви. При этом появляется несколько нервных окончаний (два и больше). Дендритов может быть много.

По аксону постоянно курсируют пузырьки, которые содержат ферменты, нейросекреты, гликопротеиды. Они направляются от центра. Скорость движения некоторых из них – 1-3 мм в сутки. Такой ток называют медленным. Если же скорость движения 5-10 мм в час, подобный ток относят к быстрому.

Если веточки аксона отходят от тела неврона, то дендрит ветвится. У него много веточек, а конечные являются самыми тонкими. В среднем насчитывается 5-15 дендритов. Они существенно увеличивают поверхность нервных волокон. Именно благодаря дендритам, невроны легко контактируют с другими нервными клетками. Клетки с множеством дендритов называют мультиполярными. Их в мозге больше всего.

А вот биполярные располагаются в сетчатке и аппарате внутреннего уха. У них лишь один аксон и дендрит.

Не существует нервных клеток, у которых вовсе нет отростков. В организме взрослого человека присутствуют невроны, у которых минимум есть по одному аксону и дендриту. Лишь у нейробластов эмбриона есть единственный отросток – аксон. В будущем на смену таким клеткам приходят полноценные.

В нейронах, как и во множестве других клеток, присутствуют органеллы. Это постоянные составляющие, без которых они не способны существовать. Органеллы расположены глубоко внутри клеток, в цитоплазме.

У невронов есть крупное круглое ядро, в котором содержится деконденсированный хроматин. В каждом ядре имеется 1-2 довольно крупных ядрышка. В ядрах в большинстве случаев содержится диплоидный набор хромосом. Задача ядра – регулировать непосредственный синтез белков. В нервных клетках синтезируется много РНК и белков.

Нейроплазма содержит развитую структуру внутреннего метаболизма. Тут много митохондрий, рибосом, есть комплекс Гольджи. Также есть субстанция Ниссля, которая синтезирует белок нервных клеток. Данная субстанция находится вокруг ядра, а также на периферии тела, в дендритах. Без всех этих компонентов не получится передать или принять биоэлектрический сигнал.

В цитоплазме нервных волокон имеются элементы опорно-двигательной системы. Они располагаются в теле и отростках. Нейроплазма постоянно обновляет свой белковый состав. Она перемещается двумя механизмами – медленным и быстрым.

Постоянное обновление белков в невронах можно рассматривать, как модификацию внутриклеточной регенерации. Популяция их при этом не меняется, так как они не делятся.

Форма

У невронов могут быть разные формы тела: звездчатые, веретенообразные, шаровидные, в форме груши, пирамиды и т.д. Они составляют различные отделы головного и спинного мозга:

  • звездчатые – это мотонейроны спинного мозга;
  • шаровидные создают чувствительные клетки спинномозговых узлов;
  • пирамидные составляют кору головного мозга;
  • грушевидные создают ткань мозжечка;
  • веретенообразные входят в состав ткани коры больших полушарий.

Есть и другая классификация. Она делит нейроны по строению отростков и их числу:

  • униполярные (отросток лишь один);
  • биполярные (есть пара отростков);
  • мультиполярные (отростков много).

Униполярные структуры не имеют дендритов, они не встречаются у взрослых, а наблюдаются в ходе развития эмбриона. У взрослых есть псевдоуниполярные клетки, у которых есть один аксон. Он разветвляется на два отростка в месте выхода из клеточного тела.

У биполярных невронов по одному дендриту и аксону. Их можно найти в сетчатке глаз. Они передают импульс от фоторецепторов к ганглионарным клеткам. Именно клетки ганглии образуют зрительный нерв.

Большую часть нервной системы составляют невроны с мультиполярной структурой. У них много дендритов.

Размеры

Разные типы нейронов могут существенно отличаться по размерам (5-120 мкм). Есть очень короткие, а есть просто гигантские. Средний размер – 10-30 мкм. Самые большие из них – мотонейроны (они есть в спинном мозге) и пирамиды Беца (этих гигантов можно найти в больших полушариях мозга). Перечисленные типы нейронов относятся к двигательным или эфферентным. Они столь велики потому, что должны принимать очень много аксонов от остальных нервных волокон.

Удивительно, но отдельные мотонейроны, расположенные в спинном мозге, имеют около 10-ти тыс. синапсисов. Бывает, что длина одного отростка достигает 1-1,5 м.

Классификация по функциям

Существует также классификация нейронов, которая учитывает их функции. В ней выделяют нейроны:

  • чувствительные;
  • вставочные;
  • двигательные.

Благодаря «двигательным» клеткам приказы отправляются к мышцам и железам. Они отправляют импульсы от центра к периферии. А вот по чувствительным клеткам сигнал отправляется от периферии непосредственно к центру.

Итак, нейроны классифицируют по:

  • форме;
  • функциям;
  • числу отростков.

Невроны могут быть не только в головном, но и в спинном мозге. Они также присутствуют в сетчатке глаз. Данные клетки выполняют сразу несколько функций, они обеспечивают:

  • восприятие внешней среды;
  • раздражение внутренней среды.

Нейроны участвуют в процессе возбуждения и торможения мозга. Полученные сигналы отправляются в ЦНС благодаря работе чувствительных нейронов. Тут импульс перехватывается и передается через волокно в нужную зону. Его анализирует множество вставочных нейронов головного или спинного мозга. Дальнейшую работу выполняет двигательный нейрон.

Нейроглия

Невроны не способны делиться, потому и появилось утверждение, что нервные клетки не восстанавливаются. Именно поэтому их следует оберегать с особой тщательностью. С основной функцией «няни» справляется нейроглия. Она находится между нервными волокнами.

Эти мелкие клетки отделяют нейроны друг от друга, удерживают их на своем месте. У них длинный список функций. Благодаря нейроглии сохраняется постоянная система установленных связей, обеспечивается расположение, питание и восстановление нейронов, выделяются отдельные медиаторы, фагоцитируется генетически чужое.

Таким образом, нейроглия выполняет ряд функций.

3.3. Нейроны, классификация и возрастные особенности

Нейроны. Нервная система образована нервной тканью, в состав которой входят специализированные нервные клетки – нейроны и клетки нейроглии.

Структурной и функциональной единицей нервной системы является нейрон (рис. 3.3.1).

Рис. 3.3.1 А – строение нейрона, Б – строение нервного волокна (аксона)

Он состоит из тела (сомы) и отходящих от него отростков: аксона и дендритов . Каждая из этих частей нейрона выполняет определенную функцию.

Тело нейрона покрыто плазматической мембраной и содержит
в нейроплазме
ядро и все органоиды, характерные для любой
животной клетки. Кроме того, в ней имеются и специфические образования –
нейрофибриллы .

Нейрофибриллы – тонкие опорные структуры, проходят в теле
в различных направлениях, продолжаются в отростки, располагаясь в них параллельно мембране. Они поддерживают определенную форму нейрона. Кроме того, они выполняют транспортную функцию,
проводя различные химические вещества, синтезирующиеся в теле нейрона (медиаторы, аминокислоты, клеточные белки и др.), к отросткам.
Тело нейрона выполняет трофическую (питательную) функцию по отношению к отросткам. При отделении отростка от тела (при перерезке) отделенная часть через 2–3 дня погибает. Гибель тел нейронов (например, при параличе) приводит к дегенерации отростков.

Аксон – тонкий длинный отросток, покрытый миелиновой оболочкой . Место отхождения аксона от тела называется аксонным холмиком , на протяжении 50–100 микрон он не имеет миелиновой
оболочки. Этот участок аксона называется
начальным сегментом , он обладает более высокой возбудимостью по сравнению с другими участками нейрона. Функция аксона – проведение нервных импульсов от тела нейрона к другим нейронам или рабочим органам. Аксон , подходя к ним, разветвляется, его конечные разветвления – терминали образуют контакты – синапсы с телом или дендритами других нейронов, или клетками рабочих органов.

Дендриты короткие, толстые ветвящиеся отростки, отходящие в большом количестве от тела нейрона (похожи на ветви дерева). Тонкие разветвления дендритов имеют на своей поверхности шипики , на которых оканчиваются терминали аксонов сотен и тысяч нейронов. Функция дендритов – восприятие раздражений или нервных импульсов от других нейронов и проведение их к телу нейрона.

Величина аксонов и дендритов, степень их ветвления в различных отделах ЦНС различна, наиболее сложное строение имеют нейроны мозжечка и коры головного мозга.

Нейроны, выполняющие одинаковую функцию группируются, образуя ядра (ядра мозжечка, продолговатого, промежуточного мозга и др.). Каждое ядро содержит тысячи нейронов, тесно связанных между собой общей функцией. Некоторые нейроны содержат в нейроплазме пигменты, придающие им определенный цвет (красное ядро и черная субстанция в среднем мозге, голубое пятно варолиева моста).

Классификация нейронов. Нейроны классифицируются по нескольким признакам:

1) по форме тела – звездчатые, веретенообразные, пирамидные и др.;

2) по локализации – центральные (расположены в ЦНС) и периферические (расположены вне ЦНС, а в спинномозговых, черепно-мозговых и вегетативных ганглиях, сплетениях, внутри органов);

3) по числу отростков – униполярные, биполярные и мультиполярные (рис. 3.3.2);

4) по функциональному признаку – рецепторные, эфферентные, вставочные.

Рис. 3.3.2

Рецепторные (афферентные, чувствительные) нейроны проводят возбуждение (нервные импульсы) от рецепторов в ЦНС. Тела этих нейронов расположены в спинальных ганглиях, от тела отходит один отросток, который Т-образно делится на две ветви: аксон и дендрит. Дендрит (ложный аксон) – длинный отросток, покрыт миелиновой оболочкой, отходит от тела на периферию, разветвляется, подходя к рецепторам.

Эфферентные нейроны (командные по Павлову И.П.) проводят импульсы из ЦНС к органам, эту функцию выполняют длинные аксоны нейронов (длина может достигать 1,5 м.). Их тела располагаются
в передних рогах (мотонейроны) и боковых рогах (вегетативные нейроны) спинного мозга.

Вставочные (контактные, интернейроны) нейроны – самая многочисленная группа, которые воспринимают нервные импульсы
от афферентных нейронов и передают их на эфферентные нейроны. Различают возбуждающие и тормозящие вставочные нейроны.

Возрастные особенности. Нервная система формируется на 3-й неделе эмбрионального развития из дорсальной части наружного зародышевого листка – эктодермы. На ранних стадиях развития нейрон имеет большое ядро, окруженное небольшим количеством нейроплазмы, затем оно постепенно уменьшается. На 3-м месяце начинается рост аксона по направлению к периферии и когда он достигает органа, тот начинает функционировать еще во внутриутробном периоде. Дендриты вырастают позднее, начинают функционировать после рождения. По мере роста и развития ребенка увеличивается количество разветвлений
на дендритах, на них появляются шипики, что увеличивает количество связей между нейронами. Количество образующихся шипиков прямо пропорционально интенсивности обучения ребенка.

У новорожденных количество нейронов больше, чем клеток нейроглии. С возрастом количество глиальных клеток увеличивается
и к 20–30 годам соотношение нейронов и нейроглии составляет 50:50. В пожилом и старческом возрасте количество глиальных клеток преобладает в связи с постепенным разрушением нейронов).

С возрастом нейроны уменьшаются в размерах, в них уменьшается количество РНК, необходимой для синтеза белков и ферментов.



Похожие статьи
 
Категории