Сумма произведение и разность случайных событий. Понятия суммы и произведения событий

04.07.2020

Правило сложения - если элемент A можно выбрать n способами, а элемент B можно выбрать m способами, то выбрать A или B можно n + m способами.

^ Правило умножения - если элемент A можно выбрать n способами, и при любом выборе A элемент B можно выбрать m способами, то пару (A, B) можно выбрать n·m способами.

Перестановка. Перестановкой множества из элементов называется расположение элементов в определенном порядке. Так, все различные перестановки множества из трех элементов - это

Число всех перестановок из элементов обозначается . Следовательно, число всех различных перестановок вычисляется по формуле

Размещение. Число размещений множества из элементов по элементов равно

^ Размещение с повторением. Если есть множество из n типов элементов, и нужно на каждом из m мест расположить элемент какого-либо типа (типы элементов могут совпадать на разных местах), то количество вариантов этого будет n m .

^ Cочетание. Определение. Сочетаниями из различных элементов по элементов называются комбинации, которые составлены из данных элементов по элементов и отличаются хотя бы одним элементом (иначе говоря, -элементные подмножества данного множества из элементов). butback="" onclick="goback(684168)">^ " ALIGN=BOTTOM WIDTH=230 HEIGHT=26 BORDER=0>


  1. Пространство элементарных событий. Случайное событие. Достоверное событие. Невозможное событие.
Пространство элементарных событий – любое множество взаимоисключающих исходов эксперимента, такое, что каждый интересующий нас результат может быть однозначно описан с помощью элементов этого множества. Бывает конечным и бесконечным(счетным и несчетным)

Случайное событие – любое подмножество пространства элементарных событий.

^ Достоверное событие – обязательно произойдет в результате эксперимента.

Невозможное событие – не произойдет в результате эксперимента.


  1. Действия над событиями: сумма, произведение и разность событий. Противоположное событие. Совместные и несовместные события. Полная группа событий.
Совместные события – если они могут произойти одновременно в результате эксперимента.

^ Несовместные события – если они не могут произойти одновременно в результате эксперимента. Говорят, что несколько несовместных событий образуют полную группу событий , если в результате эксперимента появится одно из них.

Если первое событие состоит из всех элементарных исходов, кроме тех, которые входят во второе событие, то такие события называются противоположными.

Сумма двух событий А и В – событие, состоящее из элементарных событий, принадлежащих хотя бы одному из событий А или В. ^ Произведение двух событий А и В – событие, состоящее из элементарных событий, принадлежащих одновременно А и В. Разность А и В – событие, состоящее из элементов А, не принадлежащих событию В.


  1. Классическое, статистическое и геометрическое определения вероятности. Основные свойства вероятности события.
Классическая схема: Р(А)=, n – число возможных исходов, m – число исходов, благоприятствующих событию А. татистическое определение: W(А)=, n – число произведенных экспериментов, m – число произведенных экспериментов, в которых появилось событие А. Геометрическое определение: Р(А)=, g – часть фигуры G.

^ Основные свойства вероятности: 1) 0≤Р(А)≤1, 2) Вероятность достоверного события равна 1, 3) Вероятность невозможного события равна 0.


  1. Теорема сложения вероятностей несовместных событий и следствия из нее.
Р(А+В) = Р(А)+Р(В). Следствие 1. Р(А 1 +А 2 +…+А к) = Р(А 1)+Р(А 2)+…+Р(А к), А 1 ,А 2 ,…,А к – попарно несовместны. Следствие 2 . Р(А)+Р(Ᾱ) = 1. Следствие 3 . Сумма вероятностей событий, образующих полную группу, равна 1.

  1. Условная вероятность. Независимые события. Умножение вероятностей зависимых и независимых событий.
Условная вероятность – Р(В), вычисляется в предположении, что событие А уже наступило. А и В независимые – если появление одного из них не меняет вероятность появления другого.

^ Умножение вероятностей: Для зависимых. Теорема. Р(А∙В) = Р(А)∙Р А (В). Замечание. Р(А∙В) = Р(А)∙Р А (В) = Р(В)∙Р В (А). Следствие. Р(А 1 ∙…∙А к) = Р(А 1)∙Р А1 (А 2)∙…∙Р А1-Ак-1 (А к). Для независимых. Р(А∙В) = Р(А)∙Р(В).


  1. ^ Т еорема сложения вероятностей совместных событий. Теорема . Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления
P(A+B) = P(A) + P(B) - P(A∙B)

  1. Формула полной вероятности. Формулы Байеса.
Формула полной вероятности

Н 1, Н 2 …Н n – образуют полную группу – гипотезы.

Событие А может наступить только при условии появления Н 1, Н 2 …Н n ,

Тогда Р(А)=Р(Н 1)* Р н1 (А)+Р(Н 2)*Р н2 (А)+…Р(Н n)*Р н n (А)

^ Формула Байеса

Пусть Н 1, Н 2 …Н n – гипотезы, событие А может наступить при одной из гипотез

Р(А)= Р(Н 1)* Р н1 (А)+Р(Н 2)*Р н2 (А)+…Р(Н n)*Р н n (А)

Допустим, что событие А наступило.

Как изменилась вероятность Н 1 в связи с тем, что А наступило? Т.е. Р А (Н 1)

Р(А* Н 1)=Р(А)* Р А (Н 1)= Р(Н 1)* Р н1 (А) => Р А (Н 1)= (Р(Н 1)* Р н1 (А))/ Р(А)

Аналогично определяются Н 2 , Н 3 …Н n

Общий вид:

Р А (Н i)= (Р(Н i)* Р н i (А))/ Р(А) , где i=1,2,3…n.

Формулы позволяют переоценить вероятности гипотез в результате того, как становится известным результат испытаний, в итоге которого появилось событие А.

«До» испытания – априорные вероятности - Р(Н 1), Р(Н 2)…Р(Н n)

«После» испытания – апостериорные вероятности - Р А (Н 1), Р А (Н 2)… Р А (Н n)

Апостериорные вероятности, также как и априорные, в сумме дают 1.
9.Формулы Бернулли и Пуассона.

Формула Бернулли

Пусть проводятся n испытаний, в каждом из которых событие А может появиться или нет. Если вероятность события А в каждом из этих испытаний постоянна, то эти испытания независимы относительно А.

Рассмотрим n независимых испытаний, в каждом из которых А может наступить с вероятностью p. Такая последовательность испытаний называется схемой Бернулли.

Теорема: вероятность того, что при n испытаниях событие А произойдет ровно m раз, равна: P n (m)=C n m *p m *q n - m

Число m 0 – наступление события А называется наивероятнейшим, если соответствующая ему вероятность P n (m 0) не меньше других P n (m)

P n (m 0)≥ P n (m), m 0 ≠ m

Для нахождения m 0 используют:

np-q≤ m 0 ≤np+q

^ Формула Пуассона

Рассмотрим испытание Бернулли:

n- число испытаний, p – вероятность успеха

Пусть p мало (p→0), а n велико (n→∞)

среднее число появлений успеха в n испытаниях

λ=n*p → p= λдставим в формулу Бернулли:

P n (m)=C n m *p m *(1-q) n-m ; C n m = n!/((m!*(n-m)!) →

→ P n (m)≈ (λ m /m!)*e - λ (Пуассона)

Если p≤0,1 и λ=n*p≤10, то формула дает хорошие результаты.
10. Локальная и интегральная теоремы Муавра-Лапласа.

Пусть n- число испытаний, p – вероятность успеха, n велико и стремится к бесконечности. (n->∞)

^ Локальная теорема

Р n (m)≈(f(x)/(npg)^ 1/2 , где f(x)= (e - x ^2/2)/(2Pi)^ 1/2

Если npq≥ 20 – дает хорошие результаты, х=(m-np)/(npg)^ 1/2

^ Теорема интегральная

P n (a≤m≤b)≈ȹ(x 2)-ȹ(x 1),

где ȹ(x)=1/(2Pi)^ 1/2 * 0 ʃ x e (Pi ^2)/2 dt – функция Лапласа

х 1 =(a-np)/(npq)^ 1/2 , х 2 =(b-np)/(npq)^ 1/2

Свойства функции Лапласа


  1. ȹ(x) – нечетная функция: ȹ(-x)=- ȹ(x)

  2. ȹ(x) – монотонно возрастает

  3. значения ȹ(x) (-0.5;0.5), причем lim x →∞ ȹ(x)=0,5; lim x →-∞ ȹ(x)=-0,5
Следствия

  1. P n (│m-np│≤Ɛ) ≈ 2 ȹ (Ɛ/(npq) 1/2)

  2. P n (ɑ≤m/n≤ƥ) ≈ ȹ(z 2)- ȹ(z 1), где z 1=(ɑ-p)/(pq/n)^ 1/2 z 2=(ƥ -p)/(pq/n)^ 1/2

  3. P n (│(m/n) - p│≈ ∆) ≈ 2 ȹ(∆n 1/2 /(pq)^ 1/2)
m/n относительная частота появления успеха в испытаниях

11. Случайная величина. Виды случайных величин. Способы задания случайной величины.

СВ – функция, заданная на множестве элементарных событий.

X,Y,Z – СВ, а ее значение x,y,z

Случайной называют величину, которая в результате испытаний примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.

СВ дискретна , если множество ее значений конечно или сочтено (их можно пронумеровать). Она принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной СВ может быть конечным или бесконечным.

СВ непрерывна , если она принимает все возможные значения из некоторого промежутка (на всей оси). Ее значения могут очень мало отличаться.

^ Закон распределения дискретной СВ м.б. задан:

1.таблицей


Х

х 1

х 2



х n

Р(Х)

р 1

р 2



p n

(ряд распределения)

Х=х 1 } несовместны

р 1 + р 2 +… p n =1= ∑p i

2.графический

Многоугольник распределения вероятности

3.аналитический

Р=Р(Х)
12. Функция распределения случайной величины. Основные свойства функции распределения.

Функция распределения СВ Х – функция F(Х), определяющая вероятность того, что СВ Х примет значение меньшее х., т.е.

x x = интегральная функция распределения

У непрерывной СВ функция непрерывная, кусочно дифференцируемая.

Совместные и несовместные события.

Два события называются совместными в данном опыте, если появление одного из них не исключает появления другого. Примеры : попадание в неразрушаемую цель двумя различными стрелками, выпадение одинакового числа очков на двух кубиках.

Два события называются несовместными (несовместимыми) в данном опыте, если они не могут произойти вместе при одном и том же испытании. Несколько событий называются несовместными, если они попарно несовместны. Примеры несовместных событий: а) попадание и промах при одном выстреле; б) из ящика с деталями наудачу извлечена деталь – события “извлечена стандартная деталь” и “извлечена нестандартная деталь” в) разорение фирмы и получение ею прибыли.

Другими словами, события А и В совместны, если соответствующие множества А и В имеют общие элементы, и несовместны если соответствующие множества А и В не имеют общих элементов.

При определении вероятностей событий часто используется понятие равновозможных событий. Несколько событий в данном опыте называются равновозможными, если по условиям симметрии есть основание считать, что ни одно из них объективно не является более возможным, чем другие (выпадение герба и решки, появление карты любой масти, выбор шара из урны и т.п.)

С каждым испытанием связан ряд событий, которые, вообще говоря, могут появляться одновременно. Например, при бросании игральной кости событие есть выпадение двойки, а событие – выпадение четного числа очков. Очевидно, что эти события не исключают друг друга.

Пусть все возможные результаты испытания осуществляются в ряде единственно возможных частных случаев, взаимно исключающих друг друга. Тогда

ü каждый исход испытания представляется одним и только одним элементарным событием;

ü всякое событие , связанное с этим испытанием, есть множество конечного или бесконечного числа элементарных событий;

ü событие происходит тогда и только тогда, когда реализуется одно из элементарных событий, входящих в это множество.

Произвольное, но фиксированное пространство элементарных событий , можно представить в виде некоторой области на плоскости. При этом элементарные события – это точки плоскости, лежащие внутри . Поскольку событие отождествляется с множеством, то над событиями можно совершать все операции, выполнимые над множествами. По аналогии с теорией множеств строится алгебра событий . При этом могут быть определены следующие операции и соотношения между событиями:

A ÌB (отношение включения множеств: множество А является подмножеством множества В ) событие A влечет за собой событие В . Иначе говоря, событие В происходит всякий раз, как происходит событие A . Пример - выпадение двойки влечет за собой выпадение четного числа очков.



(отношение эквивалентности множеств) событие тождественно или эквивалентно событию . Это возможно в том и только в том случае, когда и одновременно , т.е. каждое из них происходит всякий раз, когда происходит другое. Пример – событие А – поломка прибора, событие В – поломка хотя бы одного из блоков (деталей) прибора.

() сумма событий . Это событие, состоящее в том, что произошло хотя бы одно из двух событий или (логическое "или"). В общем случае, под суммой нескольких событий понимается событие, состоящее в появлении хотя бы одного из этих событий. Пример – цель поражена первым орудием, вторым или обоими одновременно.

() произведение событий . Это событие, состоящее в совместном осуществлении событий и (логическое "и"). В общем случае, под произведением нескольких событий понимается событие, состоящее в одновременном осуществлении всех этих событий. Таким образом, события и несовместны, если произведение их есть событие невозможное, т.е. . Пример – событие А – вынимание из колоды карты бубновой масти, событие В – вынимание туза, тогда - появление бубнового туза.не наступило.

Часто оказывается полезной геометрическая интерпретация операций над событиями. Графическая иллюстрация операций называется диаграммами Венна.

События

Событие. Элементарное событие.

Пространство элементарных событий.

Достоверное событие. Невозможное событие.

Тождественные события.

Сумма, произведение, разность событий.

Противоположные события. Несовместные события.

Равновозможные события.

Под событием в теории вероятностей понимают любой факт, который может произойти или не произойти в результате опыта со случайным исходом. Самый простой результат такого опыта (например, появление "орла" или "решки" при бросании монеты, попадание в цель при стрельбе, появление туза при вынимании карты из колоды, случайное выпадение числа при бросании игральной кости и т.д.) называется элементарным событием .

Множество всех элементарных событий Е называется пространством элемен тарных событий . Так, при бросании игральной кости это пространство состоит из шести элементарных событий, а при вынимании карты из колоды – из 52. Событие может состоять из одного или нескольких элементарных событий, например, появление двух тузов подряд при вынимании карты из колоды, или выпадение одного и того же числа при трёхкратном бросании игральной кости. Тогда можно определить событие как произвольное подмножество пространства элементарных событий.

Достоверным событием называется всё пространство элементарных событий. Таким образом, достоверное событие – это событие, которое обязательно должно произойти в результате данного опыта. При бросании игральной кости таким событием является её падение на одну из граней.

Невозможным событием () называется пустое подмножество пространства элементарных событий. То есть, невозможное событие не может произойти в результате данного опыта. Так, при бросании игральной кости невозможным событием является её падение на ребро.

События А и В называются тождественными ( А = В ), если событие А происходит тогда и только тогда, когда проиходит событие В .

Говорят, что событие А влечёт за собой событие В ( А В ), если из условия "произошло событие А" следует "произошло событие В" .

Событие С называется суммой событий А и В ( С = А В ), если событие С происходит тогда и только тогда, когда происходит либо А , либо В .

Событие С называется произведением событий А и В ( С = А В ), если событие С происходит тогда и только тогда, когда происходит и А , и В .

Событие С называется разностью событий А и В ( С = А В ), если событие С происходит тогда и только тогда, когда происходит событие А , и не происходит событие В .

Событие А" называется противоположным событию А , если не произошло событие А . Так, промах и попадание при стрельбе – противоположные события.

События А и В называются несовместными ( А В = ) , если их одновременное появление невозможно. Например, выпадение и "решки", и "орла" при бросании монеты.

Если при проведении опыта могут произойти несколько событий и каждое из них по объективным условиям не является более возможным, чем другое, то такие события называются равновозможными . Примеры равновозможных событий: появление двойки, туза и валета при вынимании карты из колоды, выпадение любого из чисел от 1 до 6 при бросании игральной кости и т.п.

Виды случайных событий

События называют несовместными , если появление одного из них исключает появление других событий в одном и том же испытании.

Пример 1.10. Из ящика с деталями наугад извлечена деталь. Появление стандартной детали исключает появление нестандартной детали. События {появилась стандартная деталь} и {появилась нестандартная деталь}-несовместные .

Пример 1.11. Брошена монета. Появление "герба" исключает появление цифры. События {появился герб} и {появилась цифра} - несовместные .

Несколько событий образуют полную группу , если в результате испытания появится, хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

Пример 1.12. Приобретены два билета денежно-вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий: {выигрыш выпал на первый билет и не выпал на второй}, {выигрыш не выпал на первый билет и выпал на второй}, {выигрыш выпал на оба билета}, {на оба билета выигрыш не выпал}. Эти события образуют полную группу попарно несовместных событий.

Пример 1.13. Стрелок произвел выстрел по цели. Обязательно произойдет одно из следующих двух событий: попадание или промах. Эти два несовместных события образуют полную группу .

События называют равновозможными , если есть основания считать, что ни одно из них не является более возможным, чем другое.

3. Операции над событиями: сумма (объединение), произведение (пересечение) и разность событий; диаграммы Вьенна.

Операции над событиями

События обозначаются заглавными буквами начала латинского алфавита A, B, C, D, …, снабжая их при необходимости индексами. Тот факт, что элементарный исход х содержится в событии А, обозначают .

Для понимания удобна геометрическая интерпретация при помощи диаграмм Виенна: представим пространство элементарных событий Ω в виде квадрата, каждой точке которого соответствует элементарное событие. Случайные события А и В, состоящие из совокупности элементарных событий х i и у j , соответственно, геометрически изображаются в виде некоторых фигур, лежащих в квадрате Ω (рис. 1-а, 1-б).

Пусть опыт состоит в том, что внутри квадрата, изображенного на рисунке 1-а, выбирается наугад точка. Обозначим через А событие, состоящее в том, что {выбранная точка лежит внутри левой окружности} (рис.1-а), через В – событие, состоящее в том, что {выбранная точка лежит внутри правой окружности} (рис. 1-б).


Достоверному событию благоприятствует любое , поэтому достоверное событие будем обозначать тем же символом Ω.

Два события тождественны друг другу (А=В) тогда и только тогда, когда эти события состоят из одних и тех же элементарных событий (точек).

Суммой (или объединением) двух событий А и В называется событие А+В (или ), происходящее тогда и только тогда, когда происходит или А, или В. Сумме событий А и В соответствует объединение множеств А и В (рис. 1-д).

Пример 1.15. Событие, состоящее в выпадении четного числа, является суммой событий: выпало 2, выпало 4, выпало 6. То есть, {х=четное }= {х=2 }+{х=4 }+{х=6 }.

Произведением (или пересечением) двух событий А и В называется событие АВ (или ), происходящее тогда и только тогда, когда происходит и А, и В. Произведению событий А и В соответствует пересечение множеств А и В (рис. 1-е).

Пример 1.16 . Событие, состоящее в выпадении 5, является пересечением событий: выпало нечетное число и выпало больше 3-х, то есть, A{x=5}=B{x-нечетное}∙C{x>3}.

Отметим очевидные соотношения:

Событие называется противоположным к А, если оно происходит тогда и только тогда, когда А не происходит. Геометрически – это множество точек квадрата, не входящее в подмножество А (рис. 1-в). Аналогично определяется событие (рис. 1-г).

Пример 1.14. . События, состоящие в выпадении четного и нечетного чисел, - события противоположные.

Отметим очевидные соотношения:

Два события называются несовместными , если их одновременное появление в опыте невозможно. Следовательно, если А и В несовместны, то их произведение – невозможное событие:

Введенные ранее элементарные события, очевидно, попарно несовместны, то есть

Пример 1.17 . События, состоящие в выпадении четного и нечетного чисел, - события несовместные.



Похожие статьи
 
Категории