Загрязнение мировых океанов: важность проблемы, основные факторы и пути преодоления. Загрязнение мирового океана

17.10.2019

Сушу и океан связывают реки, впадающие в моря и несущие различные загрязнители. Не распадающиеся при контакте с почвой химические вещества, такие как нефтепродукты, нефть, удобрения (особенно нитраты и фосфаты), инсектициды и гербициды в результате выщелачивания попадают в реки, а затем в океан.

Нефть и нефтепродукты - основные загрязнители океанов, но наносимый ими вред значительно усугубляют сточные воды, бытовой мусор и загрязнение воздуха.

Исследование Северного моря показало, что около 65 % обнаруженных там загрязняющих веществ были принесены реками. Ещё 25 % загрязнителей поступили из атмосферы (включая 7000 т свинца от выхлопов автомобилей), 10 % - от прямых сбросов (в основном сточные воды), а остальное - от сливов и сбросов отходов с судов.

Экологические катастрофы

Все серьёзные случаи загрязнения океана связаны с нефтью. В результате широко распространённой практики мытья трюмов танкеров, в океан ежегодно сознательно сбрасывается от 8 до 20 млн баррелей нефти.

В 1989 г. танкер «Экссон Вальдес» сел на мель в районе Аляски, и нефтяное пятно в результате разлива почти 11 млн галлонов (ок. 50 тыс. т) нефти растянулось на 1600 км вдоль побережья. «Экссон Вальдес» - один из самых известных случаев разлива нефти в море.

Сточные воды

Помимо нефти к наиболее вредным отходам относятся сточные воды. В малых количествах они обогащают воду и способствуют росту растений и рыб, а в больших - разрушают экосистемы. Существуют два крупнейших в мире места сброса стоков - Лос-Анджелес (США) и Марсел (Франция). Сточные воды приводят к гибели морских организмов, создавая подводные пустыни, усеянные органическими остатками.

Металлы и химикаты

В последние годы уменьшилось содержание в водах океанов металлов, ДДТ и ПХД (полихлордифенилов), а вот количество мышьяка необъяснимо возросло. ДДТ (долго сохраняющийся в природе токсичный пестицид на основе хлорорганического соединения) запрещён в большинстве развитых стран, но по-прежнему используется в некоторых районах Африки. Эти промышленные загрязняющие вещества - яд для животных и человека. Как и другие загрязнители океанов, например, применяемый в пестицидах и антисептиках для древесины, ГХГ (гексахлорциклогексан), они являются стойкими хлорсодержащими соединениями.

Эти химикаты выщелачиваются из почвы и попадают в море, где проникают в ткани живых организмов. ПХД накапливается в морских организмах и имеет кумулятивное воздействие. Рыб с ПХД или ГХГ могут съесть как люди, так и рыбы. Рыбу потом поедают тюлени, а те в свою очередь становятся пищей для некоторых видов китов или белых медведей. Каждый раз, когда химические вещества переходят с одного уровня пищевой цепи на другой, их концентрация растёт. Ничего не подозревающий белый медведь, съедающий дюжину тюленей, поглощает вместе с ними токсины, содержавшиеся в десятках тысяч заражённых рыб.

К опасным химическим веществам, способным нарушить экологический баланс, относятся и такие тяжёлые металлы, как кадмий, никель, мышьяк, медь, свинец, цинк и хром. Согласно подсчётам только в Северное море ежегодно сбрасывается до 50 000 т. этих металлов. Ещё большую тревогу вызывают пестициды - альдрин, дильдрин и эндрин, - накапливающиеся в животных тканях. Пока неизвестны отдалённые последствия применения таких химикатов.

Губителен для морских обитателей и ТБТ (трибутилоловохлорид) широко применяемый для покраски килей кораблей и препятствующий их обрастанию ракушками и водорослями. Доказано, что ТБТ изменяет пол самцов трубачей (вид ракообразных); в результате вся популяция состоит из женских особей, что исключает возможность размножения.

Воздействие на экосистемы

От загрязнения страдают все океаны, но загрязнённость прибрежных вод выше, чем в открытом океане, из-за намного большего числа источников загрязнения: от береговых промышленных установок до интенсивного движения морских судов. Вокруг Европы и у восточных берегов Северной Америки на мелководных континентальных шельфах устраивают садки для разведения устриц, мидий и рыб, уязвимых для токсичных бактерий, водорослей и загрязнителей. Кроме того, на шельфах ведётся нефтеразработка, что увеличивает риск разлива нефти и загрязнения.

Воды Средиземного моря полностью обновляются раз в 70 лет Атлантическим океаном, с которым оно сообщается. До 90 % сточных вод поступало сюда из 120 прибрежных городов, а другие загрязнители приходятся на долю 360 млн. людей, живущих или проводящих отпуск в 20 средиземноморских странах. Это море превратилось в громадную загрязнённую экосистему, куда ежегодно поступает около 430 млрд. т. отходов. Наиболее загрязнены морские побережья Испании, Франции и Италии, что объясняется наплывом туристов и работой предприятий тяжёлой промышленности.

Цветение воды

Другой распространённый вид загрязнения океанов - цветение воды из-за массового развития водорослей или планктона. В водах умеренного пояса такие явления известны уже довольно давно, но в субтропиках и тропиках «красный прилив» был впервые замечен вблизи Гонконга в 1971 г. Впоследствии такие случаи часто повторялись. Считают, что это связано с промышленными выбросами большого количества микроэлементов, действующих как биостимуляторы роста планктона.

Все морские животные, добывающие пищу путём фильтрации воды, очень чувствительны к загрязнителям, которые накапливаются в их тканях. Кораллы, состоящие из гигантских колоний одноклеточных организмов, плохо переносят загрязнение. Над этими живыми сообществами - коралловыми рифами и атоллами - нависла серьёзная угроза.

Загрязнение пластмассовыми отходами

Скопления отходов из пластмасс образуют в Мировом океане, под воздействием течений, особые мусорные пятна. На данный момент известно пять больших скоплений мусорных пятен — по два в Тихом и Атлантическом океанах и одно — в Индийском океане. Данные мусорные круговороты в основном состоят из пластиковых отходов, образующихся в результате сбросов из густонаселённых прибрежных зон континентов. Пластиковый мусор опасен ещё и тем, что морские животные, зачастую, могут не разглядеть прозрачные частицы, плавающие по поверхности, и токсичные отходы попадают им в желудок, часто становясь причиной летальных исходов.

Человек и океан

Количество китов убиваемых разными странами ежегодно:

Канада: 1 гренландский кит каждые два года в бухте Хадсона и один гренландский кит каждые 13 лет в бухте Бафина.
Фарерские острова: 950 пилотных китов ежегодно.
Гренландия :
175 китов в год.
Исландия: 30 малых полосатиков и 9 плавниковых китов.
Индонезия: от 10 до 20 китов.
Япония: квота для китобойного флота составляла в 2009 и 2010 годах: 935 малых полосатиков, 50 плавниковых китов и 50 китов-горбачей, правда флот вернулся с меньшим уловом, т.к. был остановлен общественными организациями препятствующими забою китов. Около 20000 дельфинов и небольших китов гибнет от рук прибрежных рыбаков. В 2009 году около 150 крупных китов погибло в сетях прибрежных рыбаков.
Норвегия: квота для китобойного флота составляла в 2011г 1286 малых полосатиков.

Это около 7400 китов ежегодно, не считая дельфинов или 20 китов ежедневно!

На сегодняшний день популяция акул в Мировом океане упала на 95-98%, ежегодно человек убивает 100 миллионов акул или это 11000 акул ежечасно. Акул убивают только из-за их плавников, которые дорого ценятся на китайском традиционном рынке, также зубы идут на сувениры туристам. Мясо акул не имеет пищевой ценности.

Очень часто у акул просто отрезают плавники и еще живых бросают умирать на дно морское. До сих пор существует промышленный вылов акул, как это ни звучит парадоксально, несколько заводов по переработке акул находятся в США.

Китовая акула – самая большая рыба на планете, самый большой экземпляр, пойманный в Индии в 1983 г, достигал 12м. Китовая акула, являясь безобидным гигантом, питается планктоном и совершенно не опасна для человека, с другой стороны человек безжалостно истребляет этого гиганта морей. По оценкам ученых в период с 1993г по 2001г популяция китовой акулы упала на 83%. В 2002г китовая акула была занесена в реестр близкой к исчезновению. За китовой акулой до сих пор охотятся на Филиппинах и в Мозамбике.
Китовая акула достигает половозрелого возраста после 20 лет жизни.
Стоимость спинного плавника китовой акулы может достигать 10000 US$.

Манта – одно из самых загадочных созданий на планете. По сей день ученым очень мало известно об этой крупной рыбе, достигающей 7м. в размахе крыльев и питающейся планктоном. У манты необычайно большой мозг, по сравнению с размерами тела, имеющий особую систему – сеть кровеносных сосудов окружающих мозг, благодаря которой, температура мозга держится выше, чем остальная часть тела. Не много известно о местах обитания и миграциях мант. Манты не живут в неволе, единственный аквариум, где это удалось сделать, находится на Окинаве, в Японии. Манты так же как и их собратья акулы, беспощадно истребляются, причина такая же – их хрящи используются в китайской традиционной кухне. К примеру, мертвая манта на Филиппинах стоит 400 US$.

История бессмысленного истребления великолепной птицы, ныне вымершей бескрылой гагарки – пример человеческой алчности и полного равнодушия к судьбе окружающего нас мира. Бескрылая гагарка, нелетающая птица с плотным телом, ростом около 75 см., была похожа на современных пингвинов. Гагарка была весьма неуклюжей на суше, но удивительно изящной и ловкой под водой, проплывая ежегодно около 5000 км. от мест зимовки у берегов Северной Каролины до мест гнездовий на скалистых островах вокруг Исландии, Гренландии и Ньюфаундленда. Истребление несчастных птиц велось интенсивно и бездумно. Рыбаки, согнав птиц на остров, принимались избивать их тяжелыми палками, а потом грузили тушки в лодки. Их отстреливали из ружей заряженных кусочками металла, старыми гвоздями, звеньями цепей и свинцовыми пулями. Случалось, гагарок просто заставляли подниматься по доске, проложенной от берега к борту лодки, тут их поджидали матросы – они проламывали птицам череп тяжелыми палками.

Ежегодно огромное количество морских свиней погибает в рыбацких сетях, другая серьезная опасность для этих млекопитающих – японские китобои, выбивающие этих беззащитных животных. К примеру, только в 1988г было убито 40000 морских свиней.

Скорости поступления загрязняющих веществ в Мировой океан в последнее время резко возросли. Ежегодно в океан сбрасывается до 300 млрд м 3 сточных вод, 90% которых предварительно не очищены. Морские экосистемы подвергаются все большему антропогенному воздействию посредством химических токсикантов, которые, аккумулируясь гидробионтами по трофической цепи, приводят к гибели консументов даже высоких порядков, в том числе и наземных животных - морских птиц, например. Среди химических токсикантов наибольшую опасность для морской биоты и человека представляют нефтяные углеводороды (особенно бенз(а)пирен), пестициды и тяжелые металлы (ртуть, свинец, кадмий и др.). В Японском море сущим бедствием стали «красные приливы», следствие эвтрофикации, при которой бурно развиваются микроскопические водоросли, а затем исчезает кислород в воде, гибнут водные животные и образуется огромная масса гниющих остатков, отравляющих не только море, но и атмосферу.

По мнению Ю.А. Израэля (1985), экологические последствия загрязнения морских экосистем выражаются в следующих процессах и явлениях (рис. 7.3):

  • нарушении устойчивости экосистем;
  • прогрессирующей эвтрофикации;
  • появлении «красных приливов»;
  • накоплении химических токсикантов в биоте;
  • снижении биологической продуктивности;
  • возникновении мутагенеза и канцерогенеза в морской среде;
  • микробиологическом загрязнении прибрежных районов моря.

Рис. 7.3.

До определенного предела морские экосистемы могут противостоять вредным воздействиям химических токсикантов, используя накопительную, окислительную и минерализующую функции гидробионтов. Так, например, двустворчатые моллюски способны аккумулировать один из самых токсичных пестицидов - ДДТ и при благоприятных условиях выводить его из организма. (ДДТ, как известно, запрещен в России, США и некоторых других странах, тем не менее он поступает в Мировой океан в значительном количестве.) Ученые доказали и существование в водах Мирового океана интенсивных процессов биотрансформации опасного загрязнителя - бенз(а)пирена, благодаря наличию в открытых и полузакрытых акваториях гетеротрофной микрофлоры. Установлено также, что микроорганизмы водоемов и донных отложений обладают достаточно развитым механизмом устойчивости к тяжелым металлам, в частности, они способны продуцировать сероводород, внеклеточные экзополимеры и другие вещества, которые, взаимодействуя с тяжелыми металлами, переводят их в менее токсичные формы.

В то же время в океан продолжают поступать все новые и новые токсичные загрязняющие вещества. Все более острый характер приобретают проблемы эвтрофирования и микробиологического загрязнения прибрежных зон океана. В связи с этим важное значение имеет определение допустимого антропогенного давления на морские экосистемы, изучение их ассимиляционной емкости как интегральной характеристики способности биогеоценоза к динамическому накоплению и удалению загрязняющих веществ.

Нефтяное загрязнение Мирового океана, несомненно, есть самое распространенное явление. От 2 до 4% водной поверхности Тихого и Атлантического океанов постоянно покрыто нефтяной пленкой. В морские воды ежегодно поступает до 6 млн т нефтяных углеводородов. Почти половина этого количества связана с транспортировкой и разработкой месторождений на шельфе. Континентальное нефтяное загрязнение поступает в океан через речной сток. Реки мира ежегодно выносят в морские и океанические воды более 1,8 млн т нефтепродуктов.

В море нефтяное загрязнение имеет различные формы. Оно может тонкой пленкой покрывать поверхность воды, а при разливах толщина нефтяного покрытия вначале может составлять несколько сантиметров. С течением времени образуется эмульсия нефти в воде или воды в нефти. Позже возникают комочки тяжелой фракции нефти, нефтяные агрегаты, которые способны долго плавать на поверхности моря. К плавающим комочкам мазута прикрепляются разные мелкие животные, которыми охотно питаются рыбы и усатые киты. Вместе с ними они заглатывают и нефть. Одни рыбы от этого гибнут, другие насквозь пропитываются нефтью и становятся непригодны для употребления в пищу из-за неприятного запаха и вкуса.

Все компоненты нетоксичны для морских организмов. Нефть влияет на структуру сообщества морских животных. При нефтяном загрязнении изменяется соотношение видов и уменьшается их разнообразие. Так, обильно развиваются микроорганизмы, питающиеся нефтяными углеводородами, а биомасса этих микроорганизмов ядовита для многих морских обитателей. Доказано, что очень опасно длительное хроническое воздействие даже небольших концентраций нефти. При этом постепенно падает первичная биологическая продуктивность моря. У нефти есть еще одно неприятное побочное свойство. Ее углеводороды способны растворять в себе ряд других загрязняющих веществ, таких как пестициды, тяжелые металлы, которые вместе с нефтью концентрируются в приповерхностном слое и еще более отравляют его. Ароматическая фракция нефти содержит вещества мутагенной и канцерогенной природы, например бенз(а)пирен. Сейчас получены многочисленные доказательства наличия мутагенных эффектов загрязненной морской среды. Бенз(а)пирен активно циркулирует по морским пищевым цепочкам и попадает в пищу людей.

Наибольшие количества нефти сосредоточены в тонком приповерхностном слое морской воды, имеющем особенно важное значение для различных сторон жизни океана. В нем сосредоточено множество организмов, этот слой играет роль «детского сада» для многих популяций. Поверхностные нефтяные пленки нарушают газообмен между атмосферой и океаном. Претерпевают изменения процессы растворения и выделения кислорода, углекислого газа, теплообмена, меняется отражательная способность (альбедо) морской воды.

Хлорированные углеводороды, широко применяемые в качестве средств борьбы с вредителями сельского и лесного хозяйства, с переносчиками инфекционных болезней, уже многие десятилетия вместе со стоком рек и через атмосферу поступают в Мировой океан. ДДТ и его производные, полихлорбифенилы и другие устойчивые соединения этого класса сейчас обнаруживаются повсюду в Мировом океане, включая Арктику и Антарктику.

Они легко растворимы в жирах и поэтому накапливаются в органах рыб, млекопитающих, морских птиц. Будучи ксенобиотиками, т.е. веществами полностью искусственного происхождения, они не имеют среди микроорганизмов своих «потребителей» и поэтому почти не разлагаются в природных условиях, а только накапливаются в Мировом океане. Вместе с тем они остротоксичны, влияют на кроветворную систему, подавляют ферментативную активность, сильно влияют на наследственность.

Вместе с речным стоком в океан поступают и тяжелые металлы, многие из которых обладают токсичными свойствами. Общая величина речного стока составляет 46 тыс. км 3 воды в год. Вместе с ним в Мировой океан поступает до 2 млн т свинца, до 20 тыс. т кадмия и до 10 тыс. т ртути. Наиболее высокие уровни загрязнения имеют прибрежные воды и внутренние моря. Немалую роль в загрязнении

Мирового океана играет и атмосфера. Так, например, до 30% всей ртути и 50% свинца, поступающих в океан ежегодно, переносится через атмосферу.

По своему токсичному действию в морской среде особую опасность представляет ртуть. Под влиянием микробиологических процессов токсичная неорганическая ртуть превращается в гораздо более токсичные органические формы. Накопленные благодаря биоаккумуляции в рыбе или в моллюсках соединения метилированной ртути представляют прямую угрозу жизни и здоровью людей. Вспомним хотя бы печально известную болезнь «Минамата», получившую название от японского залива, где так резко проявилось отравление местных жителей ртутью. Она унесла немало жизней и подорвала здоровье многих людей, употреблявших в пищу морские продукты из этого залива, на дне которого накопилось немало ртути от отходов близлежащего комбината.

Ртуть, кадмий, свинец, медь, цинк, хром, мышьяк и другие тяжелые металлы не только накапливаются в морских организмах, отравляя тем самым морские продукты питания, но и пагубно влияют на обитателей моря. Коэффициенты накопления токсичных металлов, т.е. концентрация их на единицу веса в морских организмах по отношению к морской воде, меняются в широких пределах - от сотен до сотен тысяч, в зависимости от природы металлов и видов организмов. Эти коэффициенты показывают, как накапливаются вредные вещества в рыбе, моллюсках, ракообразных, планктонных и других организмах.

Масштабы загрязнения продуктов морей и океанов так велики, что во многих странах установлены санитарные нормы на содержание в них тех или других вредных веществ. Интересно отметить, что при концентрации ртути в воде только в 10 раз большей ее естественного содержания загрязнение устриц уже превышает норму, установленную в некоторых странах. Это показывает, как близок тот предел загрязнения морей, который нельзя переступить без вредных последствий для жизни и здоровья людей.

Однако последствия загрязнения опасны, прежде всего, для всех живых обитателей морей и океанов. Эти последствия разнообразны. Первичные критические нарушения в функционировании живых организмов под действием загрязняющих веществ возникают на уровне биологических эффектов: после изменения химического состава клеток нарушаются процессы дыхания, роста и размножения организмов, возможны мутации и канцерогенез; нарушаются движение и ориентация в морской среде. Морфологические изменения нередко проявляются в виде разнообразных патологий внутренних органов: изменений размеров, развития уродливых форм. Особенно часто эти явления регистрируются при хроническом загрязнении.

Все это отражается на состоянии отдельных популяций, на их взаимоотношениях. Таким образом, возникают экологические последствия загрязнения. Важным показателем нарушения состояния экосистем является изменение числа высших таксонов - рыб. Существенно изменяется фотосинтезирующее действие в целом. Растет биомасса микроорганизмов, фитопланктона, зоопланктона. Это характерные признаки эвтрофикации морских водоемов, особенно они значительны во внутренних морях, морях закрытого типа. В Каспийском, Черном, Балтийском морях за последние 10-20 лет биомасса микроорганизмов выросла почти в 10 раз.

Загрязнение Мирового океана приводит к постепенному снижению первичной биологической продукции. По оценкам ученых, она сократилась к настоящему времени на 10%. Соответственно этому снижается и ежегодный прирост других обитателей моря.

Каким будет ближайшее будущее для Мирового океана, для важнейших морей? В целом для Мирового океана ожидается на ближайшие 20-25 лет рост его загрязнения в 1,5-3 раза. Соответственно этому будет ухудшаться и экологическая ситуация. Концентрации многих токсических веществ могут достигнуть порогового уровня, затем наступит деградация естественной экосистемы. Ожидается, что первичная биологическая продукция океана может понизиться в ряде крупных районов на 20-30% по сравнению с нынешней.

Сейчас уже ясен путь, который позволит людям избежать экологического тупика. Это безотходные и малоотходные технологии, превращение отходов в полезные ресурсы. Но потребуются десятилетия для воплощения идеи в жизнь.

Контрольные вопросы

  • 1. В чем заключаются экологические функции воды на планете?
  • 2. Какие изменения в круговорот воды внесло появление жизни на планете?
  • 3. Как происходит круговорот воды в биосфере?
  • 4. От чего зависит величина транспирации? Каковы ее масштабы?
  • 5. В чем заключается экологическое значение растительного покрова с позиций геоэкологии?
  • 6. Что понимается под загрязнением гидросферы? В чем оно проявляется?
  • 7. Какие выделяют виды загрязнения вод?
  • 8. Что собой представляет химическое загрязнение гидросферы? Каковы его виды и особенности?
  • 9. Каковы основные источники загрязнения поверхностных и подземных вод?
  • 10. Какие вещества относятся к основным загрязнителям гидросферы?
  • 11. Каковы для экосистем Земли экологические последствия загрязнения гидросферы?
  • 12. Какие последствия для здоровья человека представляет использование загрязненной воды?
  • 13. Что понимается под истощением вод?
  • 14. Каковы экологические последствия загрязнения Мирового океана?
  • 15. Как проявляется нефтяное загрязнение морской воды? Каковы его экологические последствия?

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Нефтяные загрязнения мирового океана

Мировой океан, непрерывная водная оболочка Земли, окружающая сушу (материки и острова) и обладающая общностью солевого состава. Занимает около 71% земной поверхности (в северном полушарии - 61%, в южном - 81%). Средняя глубина - 3795м., максимальная - 11022м. (Марианская впадини в Тихом океане), объем воды примерно 1370 млн.км3. Мировой океан делится на 4 части: Тихий, Атлантический, Индийский и Северный Ледовитый океаны. В Мировом океане обитает менее 20% от общего числа видов живых организмов, обнаруженных до сих пор на Земле. Общая биомасса Мирового океана составляет около 30 млрд.т. сухого органического вещества. Еще показательнее такое сопоставление: на долю океанов приходится 98,5%, воды и льда на Земле, во внутренних водоемах ее только 1,5%. В то время как средняя высота материков составляет всего 840м, средняя глубина Мирового океана - 3795 м.

Загрязнение вод Мирового океана приняло за последние 10 лет катастрофические размеры. Этому во многом способствовало широко распространенное мнение о неограниченных возможностях вод Мирового океана к самоочищению. Многие это понимали так, что любые отходы и отбросы в любом количестве в водах океана подвергаются биологической переработке без вредных последствий для самих вод.

Независимо от вида загрязнения, идет ли речь о загрязнении почвы, атмосферы или воды, все сводится в итоге к загрязнению вод Мирового океана, куда в конце концов попадают все отравляющие вещества, превращая Мировой океан в “мировую помойку”.

Различают следующие источники их сброса:

- в танкерах промывание танков и слив балластной воды;

- в сухогрузных судах слив льяльной воды, утечка из баков или насосных отделений;

- проливание при погрузке и выгрузке;

- случайный вылив при столкновении судов;

- при подводной добыче появление не с поверхности, а со дна.

Нефть представляет собой вязкую маслянистую жидкость, имеющую темно-коричневый цвет и обладающую слабой флуоресценцией. Нефть состоит преимущественно из насыщенных алифатических и гидроароматических углеводородов. Основные компоненты нефти - углеводороды (до 98%) - подразделяются на 4 класса:

1. Парафины (алкены) - (до 90% от общего состава) - устойчивые вещества, молекулы которых выражены прямой и разветвленной цепью атомов углерода. Легкие парафины обладают максимальной летучестью и растворимостью в воде.

2. Циклопарафины - (30 - 60% от общего состава) насыщенные циклические соединения с 5-6 атомами углерода в кольце. Кроме циклопентана и циклогексана в нефти встречаются бициклические и полициклические соединения этой группы. Эти соединения очень устойчивы и плохо поддаются биоразложению.

3. Ароматические углеводороды - (20 - 40% от общего состава) - ненасыщенные циклические соединения ряда бензола, содержащие в кольце на 6 атомов углерода меньше, чем циклопарафины. В нефти присутствуют летучие соединения с молекулой в виде одинарного кольца (бензол, толуол, ксилол) , затем бициклические (нафталин) , полуциклические (пирен).

4. Олефины (алкены) - (до 10% от общего состава) - ненасыщенные нециклические соединения с одним или двумя атомами водорода у каждого атома углерода в молекуле, имеющей прямую или разветвленную цепь.

Нефть и нефтепродукты являются наиболее распространенными загрязняющими веществами в Мировом океане. Попадая в морскую среду, нефть сначала растекается в виде пленки, образуя слои различной мощности. По цвету пленки можно определить ее толщину:

Нефтяная пленка изменяет состав спектра и интенсивность проникновения в воду света. Пропускание света тонкими пленками сырой нефти составляет 11-10% (280 нм), 60-70% (400нм). Пленка толщиной 30-40 мкм 0полностью полностью поглощает инфракрасное излучение. Смешиваясь с водой, нефть образует эмульсию двух типов: прямую нефть в воде и обратную вода в нефти. Прямые эмульсии, составленные капельками нефти диаметром до 0,5 мкм, менее устойчивы и характерны для нефти, содержащих поверхностно-активные вещества. При удалении летучих фракций, нефть образует вязкие обратные эмульсии, которые могут сохраняться на поверхности, переноситься течением, выбрасываться на берег и оседать на дно.

Нефтяными пленками охвачены: огромные акватории Атлантического и Тихого океанов; полностью покрыты Южно-Китайское и Желтое моря, зона Панамского канала, обширная зона вдоль берегов Северной Америки (шириной до 500-600 км), акватория между Гавайскими островами и Сан-Франциско в северной части Тихого океана и многие другие районы. Особенно большой вред такие нефтяные пленки приносят в полузамкнутых, внутренних и северных морях, куда они приносятся системами течений. Так, Гольфстрим и Северо-Атлантическое течения переносят углеводороды от берегов Северной Америки и Европы в районы Норвежского и Баренцева морей. Особенно опасно попадание нефти в моря Северного Ледовитого океана и Антарктики, так как низкие температуры воздуха тормозят процессы химического и биологического окисления нефти даже в летний период. Таким образом, нефтяное загрязнение носит глобальный характер.

Подсчитано, что даже 15 млн. т нефти достаточно чтобы покрыть нефтяной пленкой Атлантический и Северный Ледовитый океаны. А ведь содержание 10 г нефти в 1 м3 воды губительно для икры рыбы. Нефтяная пленка (1 т нефти способна загрязнить 12 км2 площади моря) уменьшает проникновение солнечных лучей, что губительно влияет на процессы фотосинтеза фитопланктона, основной кормовой базы большинства живых организмов морей и океанов. Достаточно 1 л нефти чтобы лишить кислорода 400 тыс. л морской воды. загрязнение мировой океан нефть

Нефтяные пленки могут: существенно нарушить обмен энергией, теплом, влагой, газами между океаном и атмосферой. А ведь океан играет большую роль в формировании климата, вырабатывает 60-70 кислорода, необходим для существования жизни на Земле.

При испарении нефти с поверхности воды, присутствие ее паров в воздухе вредно отражается на здоровье людей. Особенно выделяются акватории: Средиземного, Северного, Ирландского, Яванского морей; Мексиканского, Бискайского, Токийского заливов.

Так, почти вся площадь побережья Италии, омываемого водами Адриатического, Ионического, Пирренского, Лигурийского морей, общей протяженностью около 7 500 км загрязняются отходами нефтеперерабатывающих заводов и отбросами 10 тыс. промышленных предприятий.

Не в меньшей степени загрязнено отходами и Северное море. А ведь это - шельфовое море - средняя глубина его 80 м, а в районе Доггер-Банки - до недавнего времени богатой рыбопромысловой акватории - 20 м. При этом впадающие в него реки, особенно наиболее крупные, такие как: Рейн, Эльба, Везер, Темза снабжают Северное море не чистой пресной водой, а, наоборот, ежечасно несут в Северное море тысячи тонн отравляющих веществ.

Опасность “нефтяной чумы” нигде так не велика, как в районе между Эльбой и Темзой. На этот участок, где ежегодно провозится около полумиллиарда тонн сырой нефти и нефтепродуктов, приходится 50% случаев всех столкновений судов водоизмещением свыше 500 регистровых тонн. Угрожают морю и тысячи километров трубопроводов, по которым идет нефть. Бывают и аварии на буровых платформах.

Если нефть покроет пологие болотистые берега юго-восточной части Северного моря, последствия будут гораздо хуже. Этот отрезок берега от датского Эсбьерга до голландского Хелдера--уникальный район Мирового океана. На илистых отмелях и в узких протоках между ними обитает множество мелких морских животных. Здесь гнездятся и находят себе пищу миллионы морских птиц, нерестятся различные виды рыб, здесь перед выходом в открытое море откармливается их молодь. Нефть уничтожит все.

Общественность обоснованно уделяет большое внимание катастрофам танкеров, но нельзя забывать, что и сама природа загрязняет моря нефтью. По распространенной теории нефть, можно сказать, и зародилась в море. Так, считают, что она возникла из остатков мириад мельчайших морских организмов, после гибели оседавших на дно и погребенных позднейшими геологическими отложениями. Сейчас дитя угрожает жизни матери. Использование нефти человеком, ее добыча в море и перевозка по морю -- все это часто рассматривается как смертельная опасность для Мирового океана.

1978 г. в мире было около 4 тыс. танкеров, и они перевезли по морю примерно 1 700 млн. т нефти (около 60% мирового потребления нефти). Сейчас приблизительно 450 млн. т сырой нефти (15% мировой добычи за год) поступает из месторождений, находящихся под морским дном. Сейчас за год добывается из моря и перевозится по нему более 2 млрд т нефти. По оценкам Национальной академии наук США, из этого количества в море попадают 1,6 млн. т, или одна тысяча трехсотая часть. Но эти 1,6 млн. т составляют лишь 26% той нефти, которая в сумме попадает за год в море. Остальная нефть, примерно три четверти общего загрязнения, поступает с судов-сухогрузов (льяльные воды, остатки горюче-смазочных материалов, случайно или намеренно сбрасываемые в море), из природных источников, а больше всего--из городов, особенно с предприятий, расположенных на побережье или на реках, впадающих в море.

Судьбу нефти, попавшей в море, невозможно описать во всех подробностях. Во-первых, минеральные масла, попадающие в море, имеют разный состав и разные свойства; во-вторых, в море на них действуют разные факторы: ветер различной силы и направлений, волны, температура воздуха и воды. Важно и то, много ли нефти попало в воду. Сложные взаимодействия этих факторов еще не изучены во всей полноте.

Когда вблизи берега терпит аварию танкер, гибнут морские птицы: нефть склеивает их перья. Страдают прибрежная флора и фауна, пляжи и скалы покрываются трудно удаляемым слоем вязкой нефти. Если же нефть выбрасывается в открытое море, последствия бывают совершенно иными. Значительные массы нефти могут исчезнуть, не дойдя до берега.

Сравнительно быстрое поглощение нефти морем объясняется несколькими причинами.

Нефть испаряется. Бензин полностью испаряется с поверхности воды за шесть часов. За сутки испаряется не менее 10% сырой нефти, а примерно за 20 дней--50%. Но более тяжелые нефтепродукты почти не испаряются.

Нефть эмульгируется и диспергируется, то есть разбивается на мелкие капельки. Сильное волнение моря способствует образованию эмульсии нефти в воде и воды в нефти. При этом сплошной ковер нефти разрывается, превращается в мелкие капельки, плавающие в толще воды.

Нефть растворяется. В ее составе имеются вещества, растворимые в воде, хотя их доля в общем невелика.

Нефть, исчезнувшая благодаря этим явлениям с поверхности моря, подвергается медленным процессам, ведущим к ее разложению -- биологическим, химическим и механическим.

Немалую роль играет биологическое разложение. Известно более ста видов бактерий, грибков, водорослей и губок, способных превращать углеводороды нефти в двуокись углерода и воду. В благоприятных условиях благодаря деятельности этих организмов на квадратном метре за сутки при температуре 20--30° разлагается от 0,02 до 2 г нефти. Легкие фракции углеводородов распадаются за несколько месяцев, но комки битума исчезают лишь через несколько лет.

Идет фотохимическая реакция. Под действием солнечного света углеводороды нефти окисляются кислородом воздуха, образуя безвредные, растворимые в воде вещества.

Тяжелые остатки нефти могут тонуть. Так, те же комки битума могут так плотно заселяться мелкими сидячими морскими организмами, что через некоторое время опускаются на дно.

Играет роль и механическое разложение. Со временем комки битума становятся ломкими и разваливаются на куски.

Больше всего страдают от нефти птицы, особенно когда загрязняются прибрежные воды. Нефть склеивает оперение, оно утрачивает теплоизолирующие свойства, и, кроме того, птица, выпачканная в нефти, не может плавать. Птицы замерзают и тонут. Даже чистка перьев растворителями не позволяет спасти всех пострадавших. Остальные обитатели моря страдают меньше. Многочисленные исследования показали, что нефть, попавшая в море, не создает ни постоянной, ни долговременной опасности для живущих в воде организмов и не накапливается в них, так что ее попадание в человека по пищевой цепи исключено.

По последним данным, значительный вред флоре и фауне может быть нанесен только в особых случаях. Например, гораздо опаснее сырой нефти изготовленные из нее нефтепродукты -- бензин, дизельное топливо и так далее. Опасны высокие концентрации нефти на литорали (приливо-отливной зоне), особенно на песчаном берегу.

В этих случаях концентрация нефти долго остается высокой, и она наносит много вреда. Но к счастью, такие случаи сравнительно редки. Обычно при катастрофах танкеров нефть быстро расходится в воде, разбавляется, начинается ее разложение. Показано, что углеводороды нефти могут без вреда для морских организмов проходить через их пищеварительный тракт и даже через ткани: такие опыты проводились с крабами, двустворчатыми моллюсками, разными видами мелкой рыбы, и никаких вредных последствий для подопытных животных не было обнаружено.

Нефтяное загрязнение -- грозный фактор, влияющий на жизнь всего Мирового океана. Особенно опасно загрязнение высокоширотных вод, где из-за низкой температуры нефтепродукты практически не разлагаются и как бы “консервируются” льдами, поэтому нефтяное загрязнение может нанести серьезный ущерб окружающей среде Арктики и Антарктики.

Нефтепродукты, распространившиеся на больших акваториях водных бассейнов, способны изменить влаго-, газо- и энергообмен между океаном и атмосферой. Причем в морях тропических и средних широт влияние нефтяных загрязнений следует ожидать в меньших масштабах, чем в полярных районах, так как термический и биологический факторы в низких широтах способствуют более интенсивному процессу самоочищения. Эти факторы являются определяющими и в кинетике распада химических веществ. Региональные особенности ветрового режима также обусловливают изменение количественного и качественного состава нефтяных пленок, поскольку ветер способствует выветриванию и испарению легких фракций нефтепродуктов. Кроме того, ветер выступает как механический фактор разрушения пленочного загрязнения. С другой стороны, влияние нефтяных загрязнений на физические и химические характеристики подстилающей поверхности в разных географических зонах тоже не будет однозначным. Например, в Арктике нефтяные загрязнения изменяют отражательные радиационные свойства снега и льда. Уменьшение значения альбедо и отклонение от нормы процессов таяния ледников и дрейфующих льдов чревато климатическим последствиями.

Подводя итоги выше сказанному, можно сделать выводы о том, как в основном, происходит загрязнение Мирового океана:

1. При морском бурении, сборе нефти в местные резервуары и перекачке по магистральным нефтепроводам.

2. По мере роста морской добычи нефти количество перевозок ее танкерами резко возрастает, а, следовательно, возрастает и количество аварийных случаев. В последний годы увеличилось количество крупных танкеров, перевозящих нефть. На долю супертанкеров приходится более половины всего объема перевозимой нефти. Такой гигант даже после включения экстренного торможения проходит больше 1 мили (1852 м) до полной остановки. Естественно, что опасность катастрофических столкновений у таких танкеров возрастает в несколько раз. В Северном море, где плотность движения танкеров самая высокая в мире, ежегодно перевозится около 500 млн. т нефти, происходит 50 (всех столкновений.

3. Выносом нефти и нефтепродуктов в море с водами рек.

4. Приток нефтепродуктов с атмосферными осадками-легкие фракции нефти испаряются с поверхности моря и попадают в атмосферу, таким образом в Мировой океан поступает около 10 (нефти и нефтепродуктов от общего количества.

5. Сливом неочищенных вод с заводов и нефтебаз, расположенных на морских побережьях и в портах.

Литература

1 Е.А. Сабченко, И.Г. Орлова, В.А. Михайлова, Р.И. Лисовский - Нефтяное загрязнение Атлантического океана // Природа.-1983.-No5.-с.111.

2 В.В. Измайлов - Воздействие нефтепродуктов на снежно-ледяной покров Арктики // Известия всесоюзного географического общества.-1980 (март-апрель).-том 112.-вып.2.-с.147-152.

3 Д.П. Никитин, Ю.В. Новиков, Окружающая среда и человек - Москва: Высшая школа.-1986.-416с.

Размещено на Allbest.ru

...

Подобные документы

    Понятие о Мировом океане. Богатства Мирового океана. Минеральные, энергетические и биологические виды ресурсов. Экологические проблемы Мирового океана. Загрязнения сточными водами промышленности. Нефтяные загрязнения морских вод. Методы очистки вод.

    презентация , добавлен 21.01.2015

    Гидросфера и ее охрана от загрязнения. Мероприятия по охране вод морей и Мирового океана. Охрана водных ресурсов от загрязнения и истощения. Особенности загрязнения Мирового океана и поверхности вод суши. Проблемы пресной воды, причины ее недостатка.

    контрольная работа , добавлен 06.09.2010

    Физико-географическая характеристика Мирового океана. Химическое и нефтяное загрязнение океана. Истощение биологических ресурсов Мирового океана и уменьшение биоразнообразия океана. Захоронение опасных отходов – дампинг. Загрязнение тяжелыми металлами.

    реферат , добавлен 13.12.2010

    Гидросфера как водная среда, которая включает поверхностные и подземные воды. Характеристика источников загрязнения мирового океана: водный транспорт, захоронение на морском дне радиоактивных отходов. Анализ биологических факторов самоочищения водоема.

    презентация , добавлен 16.12.2013

    Промышленные и химические загрязнения океана, пути поступления в него нефти и нефтепродуктов. Основные неорганические (минеральные) загрязнители пресных и морских вод. Сброс отходов в море с целью захоронения. Самоочищение морей и океанов, их охрана.

    реферат , добавлен 28.10.2014

    Количество загрязняющих веществ в океане. Опасности нефтяного загрязнения для обитателей моря. Цикл воды в биосфере. Значение воды для жизнедеятельности человека и всего живого на планете. Основные пути загрязнения гидросферы. Охрана Мирового океана.

    презентация , добавлен 09.11.2011

    Нефть и нефтепродукты. Пестициды. Синтетические поверхностно-активные вещества. Соединения с канцерогенными свойствами. Тяжелые металлы. Сброс отходов в море с целю захоронения (дампинг). Тепловое загрязнение.

    реферат , добавлен 14.10.2002

    Изучение теории о происхождения жизни на Земле. Проблема загрязнения Мирового океана нефтепродуктами. Сброс, захоронение (дампинг) в море различных материалов и веществ, отходов промышленности, строительного мусора, химических и радиоактивных веществ.

    презентация , добавлен 09.10.2014

    Основные виды загрязнения гидросферы. Загрязнение океанов и морей. Загрязнение рек и озер. Питьевая вода. Загрязнение подземных вод. Актуальность проблемы загрязнения водоемов. Спуск сточных вод в водоемы. Борьба с загрязнением вод Мирового океана.

    реферат , добавлен 11.12.2007

    Мировой океан и его ресурсы. Загрязнение Мирового океана: нефть и нефтепродукты, пестициды, синтетические поверхностно–активные вещества, соединения с канцерогенными свойствами, сброс отходов в море с целью захоронения (дампинг). Охрана морей и океанов.

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Специалисты утверждают – экологические проблемы мирового океана необходимо решать в 21 веке, иначе можно ожидать серьезных последствий. Что угрожает Мировому океану? С чем связано возросшее беспокойство экологов? Какие ресурсы теряет планета из-за загрязнения вод?

Экологическая обстановка в 21 веке

О загрязнении мировых вод разговоры ведутся давно. И не только разговоры – достаточно взглянуть на количество крупных экологических исследований – только с начала 21 века их проведено более тысячи. Под загрязнением экологи подразумевают попадание в воды Мирового океана таких веществ, которые могут нарушить естественный биологический и неорганический баланс материи и привести к серьезным изменениям в составе или в динамике вод океана.

На данный момент загрязнение Мирового океана уже привело к таким последствиям:

  1. Нарушение экосистем – в некоторых частях океана пропадают уникальные экосистемы, уничтожаются редкие виды, меняется состав растительности, уменьшается биоразнообразие.
  2. Прогрессирующая эвтрофикация – вода становится менее чистой, появляется все больше органических и неорганических примесей, возрастает количество животных при уменьшении видового разнообразия.
  3. В биоте накапливаются химические загрязнители – токсические вещества.
  4. Результат комплексного воздействия – снижение биологической продуктивности. Это заметно по сокращающемуся свободному вылову рыбы.
  5. Повышение концентрации канцерогенных соединений в морской воде.
  6. Высокая степень микробиологического загрязнения прибрежных вод.

Все перечисленные последствия загрязнения Мирового океана губительны не только для обитателей моря, но и для цивилизации. Моря – серьезный источник ресурсов, начиная от нефти и заканчивая . Поэтому разумное использование водных ресурсов – это первоочередная экологическая задача.

Несмотря на способность мировых вод к самоочищению, он не в состоянии справиться с текущими объемами загрязнения.

Наиболее опасные и значимые факторы загрязнения:

  • Нефть и нефтепродукты.
  • Радиоактивные вещества.
  • Промышленные отходы, бытовые.
  • Материковый сток.
  • Атмосферное загрязнение.

Последние два пункта – это внешние источники загрязнения, которые хоть и зависят от природных факторов, также связаны с деятельностью человека.

В прошлом веке загрязнение носило локальный характер. Больше всего загрязняющих веществ наблюдалось в прибрежных зонах, на побережье материков, рядом с промышленными центрами, а также рядом с крупнейшими судоходными путями. В последние 20 лет ситуация изменилась – теперь загрязняющие вещества обнаруживают даже в водах высоких широт – рядом с полюсами. Таким образом, загрязнение носит масштабный характер и затрагивает все воды Мирового океана.

Основные причины загрязнения:

  • Освоение минеральных и энергетических ресурсов.
  • Повышение добычи биологических ресурсов.
  • Интенсификация хозяйственной деятельности.
  • Увеличение объемов добычи нефти.
  • Рост промышленности.

На данный момент самыми загрязненными океанами принято считать тихий и Атлантический, а самыми загрязненными морями – Северное, средиземное, Балтийское, а также внутренние воды Персидского залива.

Загрязнение нефтепродуктами

Это один из основных факторов загрязнения Мирового океана. Существуют подсчеты, которые показывают, что среднегодовой сброс нефти в океан составляет около 15 млн. тонн. В это число входят как непреднамеренные утечки и аварии танкеров, так и сознательный сток с нефтеперерабатывающих предприятий. В настоящее время меры ужесточаются, но все еще ощущается влияние того времени, когда не существовало законов, защищающих океан от промывки танкеров и стока с предприятий.

Крупнейшие зоны нефтяного загрязнения расположены в прибрежных водах, а также по пути следования нефтеналивных судов. В этих зонах экологи отмечают резкое сокращение видового разнообразия флоры и фауны.

Экологические проблемы Тихого океана и Атлантического – это, прежде всего, нефтяная пленка, которая по разным данным покрывает от 2 до 4% водной поверхности. В воды этих двух океанов ежегодно поступает 6 млн. тонн нефти и отходов нефтяной промышленности – и это только те отходы, которые удалось подсчитать. Половина отходов появляются в результате разработки шельфовых месторождений. Загрязнения от континентальной добычи поступают воды через речной сток.

После попадания нефти в океан, происходит следующее:

  • Образуется пленка, покрывающая поверхность воды. Толщина пленки – от долей миллиметра до нескольких сантиметров. Все животные, попадающие в эту пленку, погибают.
  • Пленка превращается в эмульсию – смесь воды и нефти.
  • Нефть собирается в конгломераты – тяжелые комки, которые остаются плавать в поверхностном слое воды.
  • Нефть заглатывают крупные рыбы и млекопитающие – например, киты. Таким образом, нефть распространяется по океану. Рыбы, заглотившие нефтяной агрегант, либо погибают, либо продолжают жить, но уже непригодны в пищу после вылова.
  • Последний этап – уменьшение биоразнообразия, изменение видовой структуры биотопа.

Результат – падение биологической продуктивности. Это особенно важно для районов, экономика которых построена на ловле рыбы и на добыче морепродуктов. Долгосрочный результат – непредсказуемое изменение биологической составляющей океана.

Дампинг – сброс отходов в океан

Сброс или захоронение токсичных отходов в одах Мирового океана называется дампинг. Это распространенная практика во всех промышленных центрах планеты. Несмотря на действующие запреты, сток с промышленных предприятий растет с каждым годом.

В среднем на дампинг приходится до 10% от всех загрязняющих веществ, попадающих в океан.

В основном загрязнение происходит в таких ситуациях:

  • Намеренное захоронение материалов, полученных на токсичном производстве.
  • Сброс материалов при ведении работ на дне моря и в прибрежной зоне.
  • Захоронение строительного мусора.
  • Захоронение химических веществ, взрывчатки, радиоактивных веществ, представляющих угрозу при хранении на суше.

Отходы растворяются в воде, накапливаются в донных отложениях. После сброса невозможно очистить воды и вернуть им первоначальное состояние. Изначально у дампинга имелось экологическое обоснование – возможности Мирового океана, который способен переработать некоторое количество токсичных веществ без ущерба.

Дампинг долгое время считался временной мерой. Теперь понятно – сколько существует промышленность, столько же идет захоронение отходов в морских водах. Мировой океан не может справиться с переработкой такого количество отходов, экология морских вод под угрозой. На данный момент глобальный сброс отходов – это одна из важнейших проблем для мирового сообщества.

Последствия ненормированного сброса отходов:

  • Гибель бентоса.
  • Сокращение скорости роста рыб и беспозвоночных.
  • Изменение видового состава.

Как результат – сокращение базы для добычи пищевых ресурсов.

Загрязнение может быть и непрямым. Так, предприятия химической промышленности, расположенные вдалеке от прибрежных районов, также влияют на состояние вод. Происходит выброс загрязнителей в атмосферу, откуда вредные вещества вместе с осадками попадают в морскую воду.

Радиоактивное загрязнение составляет небольшую долю от общего загрязнения, но при этом может быть более опасно, чем сброс нефти. Причина – способность радиоактивных соединений долго сохранять губительные для живого свойства.

Радиация губительно влияет и на растения, и на животных. Лучевая нагрузка со временем суммируется, радиационное воздействие не проходит бесследно. Заражение передается через пищевые цепи – от одного животного к другому. В результате губительные дозы радиации концентрируются в живых организмах. Так, есть районы, где планктон в 1000 раз более радиоактивен, чем вода.

Международные договоры о запретах на ядерные испытания остановили массовое загрязнение океана радиоактивными отходами. Но прежние захоронения остались и все еще влияют на жизнедеятельность морских обитателей.

Основные пути накопления ядерных отходов в водах Мирового океана:

  • Размещение подводных лодок с ядерными средствами сдерживания.
  • Использование ядерных энергетических установок на подводных лодках.
  • Транспортировка отходов по воде.
  • Захоронение не обезвреженных ядерных отходов, ядерного топлива – это основные экологические проблемы Северного Ледовитого океана.
  • Испытания ядерного оружия – это проблемы Атлантического океана, и, в большей степени, Тихого. Испытания приводят как к континентальному загрязнению, так и к попаданию радиоактивных отходов в акваторию.
  • Подземные испытания – радиоактивные отходы попадают в океан со стоком рек.

Ядерные отходы вызывают целый комплекс проблем – страдает не только экология живого, нарушается естественный баланс неорганических веществ.

Загрязнение мировых вод – это одна из крупнейших экологических проблем современности. Несмотря на все принятые меры экологической защиты вод от губительного воздействия промышленности, до сих пор не удалось достигнуть каких-либо серьезных результатов.

1. Особенности поведения загрязняющих веществ в океане

2. Антропогенная экология океана - новое научное направление в океанологии

3. Концепция ассимиляционной емкости

4. Выводы из оценки ассимиляционной емкости морской экосистемы загрязняющими веществами на примере Балтийского моря

1 Особенности поведения загрязняющих веществ в океане. Последние десятилетия знаменуются усилением антропогенных воздействий на морские экосистемы в результате загрязнения морей и океанов. Распространение многих загрязняющих веществ приобрело локальный, региональный и даже глобальный масштабы. Поэтому загрязнение морей, океанов и их биоты стало важнейшей международной проблемой, а необходимость охраны морской среды от загрязнений диктуется требованиями рационального использования природных ресурсов.

Под загрязнением моря понимается: «введение человеком прямо или косвенно веществ или энергии в морскую среду (включая эстуарии), влекущее такие вредные последствия, как ущерб живым ресурсам, опасность для здоровья людей, помехи в морской деятельности, включая рыболовство, ухудшение качества морской воды и умень­шение ее полезных свойств». Этот список включает вещества с токсическими свойствами, сбросы нагретых вод (тепловое загрязнение), патогенные микробы, твердые отходы, взвешенные вещества, биогенные вещества и некоторые другие формы антропогенных воздействий.

Наиболее актуальной в наше время стала проблема химиче­ского загрязнения океана.

К источникам загрязнения океана и морей можно отнести следующие:

Сброс промышленных и хозяйственных вод непосредственно в море или с речным стоком;

Поступление с суши различных веществ, применяемых в сельском и лесном хозяйстве;

Преднамеренное захоронение в море загрязняющих веществ; утечки различных веществ в процессе судовых операций;

Аварийные выбросы с судов или подводных трубопроводов;

Разработка полезных ископаемых на морском дне;

Перенос загрязняющих веществ через атмосферу.

Перечень получаемых океаном загрязняющих веществ чрезвычайно обширен. Все они различаются между собой по степени токсичности и масштабам распространения - от прибрежных (локальных) до глобальных.

В Мировом океане находят все новые загрязняющие вещества. Глобальное распространение приобретают наиболее опасные для организмов хлорорганические соединения, полиароматические углеводороды и некоторые другие. Они обладают высокой биоаккумулятивной способностью, резким токсическим и канцерогенным эффектом.

Неуклонное нарастание суммарного воздействия многих источников загрязнения приводит к прогрессирующей эвтрофикации прибрежных морских зон и микробиологическому загрязнению воды, что существенно затрудняет использование воды для раз­личных нужд человека.


Нефть и нефтепродукты. Нефть представляет собой вязкую маслянистую жидкость, обычно имеющую темно-коричневый цвет и обладающую слабой флуоресценцией. Нефть состоит преимущественно из насыщенных алифатических и гидроароматических углеводородов (от C 5 до С 70) и содержат 80-85 % С, 10-14 % Н, 0,01-7 % S, 0,01 % N и 0-7 % О 2 .

Основные компоненты нефти - углеводороды (до 98 %) - подразделяются на четыре класса.

1. Парафины (алканы) (до 90 % от общего состава нефти) -устойчивые насыщенные соединения C n H 2n-2 , молекулы которых выражены прямой или разветвленной (изоалканы) цепью атомов углерода. Парафины включают газы метан, этан, пропан и другие, соединения с 5-17 атомами углерода являются жидкостями, а с большим числом атомов углерода - твердыми веществами. Легкие парафины обладают максимальной летучестью и растворимостью в воде.

2. Циклопарафины. (нафтены)-насыщенные циклические соединения С n Н 2 n с 5-6 атомами углерода в кольце (30-60 % от общего состава нефти). Кроме циклопентана и циклогексана в нефти встречаются бициклические и полициклические нафтены. Эти соединения очень устойчивы и плохо поддаются биоразложению.

3. Ароматические углеводороды (20-40 % от общего состава нефти) - ненасыщенные циклические соединения ряда бензола, содержащие в кольце на 6 атомов углерода меньше, чем соответствующие нафтены. Атомы углерода в этих соединениях также могут замещаться алкильными группами. В нефти присутствуют летучие соединения с молекулой в виде одинарного кольца (бензол, толуол, ксилол), затем бициклические (нафталин), трициклические (антрацен, фенантрен) и полициклические (например, пирен с 4 кольцами) углеводороды.

4. Олефипы (алкены) (до 10 % от общего состава нефти) -ненасыщенные нециклические соединения с одним или двумя атомами водорода у каждого атома углерода в молекуле, имеющей прямую или разветвленную цепь.

В зависимости от месторождения, нефти существенно различа­ются по своему составу. Так, пенсильванская и кувейтская нефти квалифицируются как парафинистые, бакинская и калифорний­ская - преимущественно нафтеновые, остальные нефти - проме­жуточных типов.

В нефти присутствуют также серосодержащие соединения (до 7% серы), жирные кислоты (до 5% кислорода), азотные соединения (до 1 % азота) и некоторые металлоорганические производные (с ванадием, кобальтом и никелем).

Количественный анализ и идентификация нефтепродуктов в морской среде представляют значительные трудности не только из-за их многокомпонентности и различия форм существования, но и вследствие природного фона углеводородов естественного и биогенного происхождения. Например, около 90 % растворенных в поверхностных водах океана низкомолекулярных углеводородов типа этилена связано с метаболической активностью организмов и распадом их остатков. Однако в районах интенсивного загряз­нения уровень содержания подобных углеводородов повышается на 4-5 порядков.

Углеводороды биогенного и нефтяного происхождения, по данным экспериментальных исследований, имеют ряд различий.

1. Нефть представляет собой более сложную смесь углеводородов с большим диапазоном структур и относительной молекулярной массой.

2. Нефть содержит несколько гомологических серий, в которых соседние члены обычно имеют равные концентрации. Например, в ряду алканов С 12 -C 22 отношение четных и нечетных членов равно единице, тогда как биогенные углеводороды в том же ряду содержат преимущественно нечетные члены.

3. Нефть содержит более широкий диапазон циклоалканов и ароматических углеводородов. Многие соединения, такие, как моно-, ди-, три- и тетраметилбензолы не обнаружены в морских организмах.

4. Нефть содержит многочисленные нафтено-ароматические углеводороды, разнообразные гетеросоединения (имеющие в составе серу, азот, кислород, ионы металлов), тяжелые асфальтоподобные вещества - все они практически отсутствуют в организмах.

Нефть и нефтепродукты являются наиболее распространен­ными загрязняющими веществами в Мировом океане.

Пути поступления и формы существования нефтяных углеводо­родов многообразны (растворенная, эмульгированная, пленочная, твердообразная). М. П. Нестерова (1984) отмечает следующие пути поступления:

сбросы в портах и припортовых акваториях, вклюная потери при загрузке бункеров наливных судов (17 %~);

Сброс промышленных- отходов и сточных вод (10%);

Ливневые стоки (5 %);

Катастрофы судов и буровых установок в море (6 %);

Бурение на шельфах (1 %);

Атмосферные выпадения (10 %)",

Вынос речным стоком во всем многообразии форм (28%).

Сбросы в море промывочных, балластных и льяльных вод с судов (23%);

Наибольшие потери нефти связаны с ее транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод,-все это обусловливает присут­ствие постоянных полей загрязнений на трассах морских путей.

Свойством нефтей является их флуоресценция при ультрафиолето­вом облучении. Максимальная интенсивность флуоресценции наб­людается в интервале волн 440-483 нм.

Различие оптических характеристик нефтяных пленок и мор­ской воды позволяет проводить дистанционное обнаружение и оценку нефтяных загрязнений на поверхности моря в ультрафиолетовой, видимой и инфракрасной частях спектра. Для этого при­меняются пассивные и активные методы. Большие массы нефти с суши поступают в моря по рекам, с бытовыми и ливневыми стоками.

Судьба разлитой в море нефти определяется суммой следую­щих процессов: испарение, эмульгирование, растворение, окисле­ние, образование нефтяных агрегатов, седиментация и биодеградация.

Попадая в морскую среду, нефть сначала растекается в виде поверхностной пленки, образуя слики различной мощности. По цвету пленки можно приблизительно оценить ее толщину. Нефтяная пленка изменяет интенсивность и спект­ральный состав проникающего в водную массу света. Пропуска­ние света тонкими пленками сырой нефти составляет 1 -10 % (280 нм), 60-70 % (400 нм). Пленка нефти толщиной 30-40 мкм полностью поглощает инфракрасное излучение.

В первое время существования нефтяных сликов большое зна­чение имеет процесс испарения углеводородов. По данным наблю­дений, за 12 ч улетучивается до 25 % легких фракций нефти, при температуре воды 15 °С все углеводороды до C 15 испаряются за 10 сут (Нестерова, Немировская, 1985).

Все углеводороды обладают слабой растворимостью в воде, уменьшающейся с увеличением числа атомов углерода в моле­куле. В 1 л дистиллированной воды растворяется около 10 мг соединений с С 6 , 1 мг - с С 8 и 0,01 мг соединений с С 12 . Например, при средней температуре морской воды растворимость бензола составляет 820 мкг/л, толуола - 470, пентана - 360, гексана - 138 и гептана - 52 мкг/л. Растворимые компоненты, содержание которых в сырой нефти не превышает 0,01 %, являются наиболее токсичными- для водных организмов. К ним же относятся и веще­ства типа бенз(а)пирена.

Смешиваясь с водой, нефть образует эмульсии двух типов: пря­мые «нефть в воде» и обратные «вода в нефти». Прямые эмуль­сии, составленные капельками нефти диаметром до 0,5 мкм, ме­нее устойчивы и особенно характерны для нефтей, содержащих поверхностно-активные вещества. После удаления летучих и растворимых фракций остаточная нефть чаще образует вязкие обратные эмульсии, которые стабилизируются высокомолекуляр­ными соединениями типа смол и асфальтенов и содержат 50- 80 % воды («шоколадный мусс»). Под влиянием абиотических процессов вязкость «мусса» повышается и начинается его слипа­ние в агрегаты - нефтяные комочки размерами от 1 мм до 10 см (чаще 1-20 мм). Агрегаты представляют собой смесь вы­сокомолекулярных углеводородов, смол и асфальтенов. Потери нефти на формирование агрегатов составляют 5-10%- Высоко­вязкие структурированные образования - «шоколадный мусс» и нефтяные комочки - могут длительное время сохраняться на поверхности моря, переноситься течениями, выбрасываться на берег и оседать на дно. Нефтяные комочки нередко заселяются перифитоном (сине-зеленые и диатомовые водоросли, усоногие рачки и другие беспозвоночные).

Пестициды составляют обширную группу искусственно создан­ных веществ, используемых для борьбы с вредителями и болез­нями растений. В зависимости от целевого назначения пестициды делятся на следующие группы: инсектициды – для борьбы с вред­ными насекомыми, фунгициды и бактерициды – для борьбы с грибными и бактериальными болезнями растений, гербициды – против сорных растений и т. д. Согласно расчетам экономистов, каждый рубль, затраченный на химическую защиту растений от вредителей и болезней, обеспечивает сохранение урожая и его качество при возделывании зерновых и овощных культур в сред­нем на 10 руб., технических и плодовых – до 30 руб. Вместе с тем экологическими исследованиями установлено, что пестициды, уничтожая вредителей урожаев, наносят огромный вред многим полезным организмам и подрывают здоровье природных биоцено­зов. В сельском хозяйстве уже давно стоит проблема перехода от химических (загрязняющих среду) к биологическим (экологи­чески чистым) методам борьбы с вредителями.

В настоящее время более 5 млн. т пестицидов ежегодно посту­пает на мировой рынок. Около 1,5 млн. т этих веществ уже вошло в состав наземных и морских экосистем эоловым или водным путем. Промышленное производство пестицидов сопровождается появлением большого количества побочных продуктов, загрязня­ющих сточные воды.

В водной среде чаще других встречаются представители инсек­тицидов, фунгицидов и гербицидов.

Синтезированные инсектициды делятся на три основные группы: хлорорганические, фосфорорганические и карбаматы.

Хлорорганические инсектициды получают путем хлорирования ароматических или гетероциклических жидких углеводородов. К ним относятся ДДТ (дихлордифенилтрихлорэтан) и его произ­водные, в молекулах которых устойчивость алифатических и аро­матических групп в совместном присутствии возрастает, всевоз­можные хлорированные производные циклодиена (элдрин, дил-дрин, гептахлор и др.), а также многочисленные изомеры гекса-хлорциклогексана (у-ГХЦГ), из которых наиболее опасен линдан. Эти вещества имеют период полураспада до нескольких десятков лет и очень устойчивы к биодеградации.

В водной среде часто встречаются полихлорбифенилы (ПХБ) – производные ДДТ без алифатической части, насчиты­вающие 210 теоретических гомологов и изомеров.

За последние 40 лет использовано более 1,2 млн. т ПХБ в производстве пластмасс, красителей, трансформаторов, конденсаторов и т. д. Полихлорбифенилы попадают в окружающую среду в результате сбросов промышленных сточных вод и сжига­ния твердых отходов на свалках. Последний источник поставляет ПХБ в атмосферу, откуда они с атмосферными осадками выпа­дают во всех районах земного шара. Так, в пробах снега, взятых в Антарктиде, содержание ПХБ составило 0,03 – 1,2 нг/л.

Фосфорорганические пестициды – это сложные эфиры различных спиртов ортофосфорной кислоты или одной из ее производ­ных, тиофосфорной. В эту группу входят современные инсекти­циды с характерной избирательностью действия по отношению к насекомым. Большинство органофосфатов подвержены довольно быстрому (в течение месяца) биохимическому распаду в почве и воде. Синтезировано более 50 тысяч активных веществ, из ко­торых особую известность получили паратион, малатион, фозалонг, дурсбан.

Карбаматы – это, как правило, сложные эфиры n-метакарба-миновой кислоты. Большинство из них также обладает избирательностью действия.

В качестве фунгицидов, применяемых для борьбы с грибными заболеваниями растений, ранее использовались соли меди и не­которые минеральные соединения серы. Затем широкое употреб­ление нашли ртутьорганические вещества типа хлорированной метилртути, которая из-за своей крайней токсичности для жи­вотных была заменена метоксиэтилами ртути и ацетатами фенил-ртути.

В группу гербицидов входят производные феноксиуксусной кислоты, обладающие сильным физиологическим действием. Триазины (например, симазин) и замещенные мочевины (монурон, диурон, пихлорам) составляют еще одну группу гербицидов, довольна хорошо растворимых в воде и устойчивых в почвах. Наиболее сильным из всех гербицидов является пихлорам. Для полного уничтожения некоторых видов растений требуется всего лишь 0,06 кг этого вещества на 1 га.

В морской среде постоянно обнаруживаются ДДТ и его метаболиты, ПХБ, ГХЦГ, делдрин, тетрахлорфенол и другие.

Синтетические поверхностно-активные вещества. Детергенты (СПАВ) относятся к обширной группе веществ, понижающих поверхностное натяжение воды. Они входят в со­став синтетических моющих средств (CMC), широко применяемых в быту и промышленности. Вместе со сточными водами СПАВ по­падают в материковые поверхностные воды и морскую среду. Синтетические моющие средства содержат полифосфаты натрия, в которых растворены детергенты, а также ряд добавочных ингре­диентов, токсичных для водных организмов: ароматизирующие вещества, отбеливающие реагенты (персульфаты, пербораты), кальцинированная сода, карбоксиметилцеллюлоза, силикаты нат­рия и другие.

Молекулы всех СПАВ состоят из гидрофильной и гидрофобной частей. Гидрофильной частью служат карбоксильная (СОО -), сульфатная (OSO 3 -) и сульфонатная (SO 3 -) группы, а также скоп­ления остатков с группами -СН 2 -СН 2 -О-СН 2 -СН 2 - или группы, содержащие азот и фосфор. Гидрофобная часть состоит обычно из прямой, включающей 10-18 атомов углерода, или раз­ветвленной парафиновой цепи, из бензольного или нафталинового кольца с алкильными радикалами.

В зависимости от природы и структуры гидрофильной части молекулы СПАВ делятся на анионоактивные (органический ион заряжен отрицательно), катионоактивные (органический ион за­ряжен положительно), амфотерные (проявляющие в кислом раст­воре катионактивные свойства, а в щелочном - анионоактивные) и неионогенные. Последние не образуют ионов в воде. Их раст­воримость обусловлена функциональными группами, имеющими -сильное сродство к воде, и образованием водородной связи между молекулами воды и атомами кислорода, входящими в полиэти-ленгликолевый радикал ПАВ.

Наиболее распространенными среди СПАВ являются анионоактивные вещества. На их долю приходится более 50 % всех производимых в мире СПАВ. Наибольшее рас­пространение получили алкиларилсульфонаты (сульфонолы) и алкилсульфаты. Молекулы сульфонолов содержат ароматическое кольцо, водородные атомы которого замещены одной или несколь­кими алкильными группами, а в качестве сольватирующей группы - остаток серной кислоты. Многочисленные алкилбензол-сульфонаты и алкилнафталинсульфонаты часто исполь­зуются при изготовлении различных бытовых и промышленных CMC.

Присутствие СПАВ в сточных водах промышленности связано с использованием их в таких процессах, как флотационное обогащение руд, разделение продуктов химической технологии, получение полимеров, улучшение условий бурения нефтяных и газовых скважин, борьба с коррозией оборудования.

В сельском хозяйстве применяются СПАВ в составе пестицидов. С помощью СПАВ эмульгируют нерастворимые в воде, но растворимые в органических растворителях жидкие и порошко­образные токсичные вещества, причем многие СПАВ сами обла­дают инсектицидными и гербицидными свойствами.

Канцерогенные вещества - это химически однородные соеди­нения, проявляющие трансформирующую активность и способ­ные вызывать канцерогенные, тератогенные (нарушение процес­сов эмбрионального развития) или мутагенные изменения в орга­низмах. В зависимости от условий воздействия они могут приво­дить к ингибированию роста, ускорению старения, токсикогенезу, нарушению индивидуального развития и изменению генофонда ор­ганизмов. К веществам, обладающим канцерогенными свойствами, отно­сятся хлорированные алифатические углеводороды с короткой щепочкой атомов углерода в молекуле, винилхлорид, пестицидные препараты и, особенно, полициклические ароматические углево­дороды (ПАУ). Последние представляют собой высокомолекуляр­ные органические соединения, в молекулах которых бензольное кольцо является основным элементом структуры. Многочисленные незамещенные ПАУ содержат в молекуле от 3 до 7 бензольных колец, разнообразно соединенных между собой. Существует также большое число полициклических структур, содержащих функциональную группу либо в бензольном кольце, либо в боко­вой цепи. Эта галоген-, амино-, сульфо-, нитропроизводные, а также спирты, альдегиды, эфиры, кетоны, кислоты, хиноны и другие соединения ароматического ряда.

Растворимость ПАУ в воде невелика и уменьшается с увеличением молекулярной массы: от 16 100 мкг/л (аценафтилен) до 0,11 мкг/л (3,4-бензпирен). Присутствие в воде солей практически не влияет на растворимость ПАУ. Однако в присутствии бензола, нефти, нефтепродуктов, детергентов и других органических ве­ществ растворимость ПАУ резко возрастает. Из группы незамещенных ПАУ в природных условиях наиболее известен и распространен 3,4-бензпирен (БП).

Источниками ПАУ в окружающей среде могут служить природные и антропогенные процессы. Концентрация БП в вулкани­ческом пепле составляет 0,3-0,9 мкг/кг. Это означает, что с пеп­лом в окружающую среду может поступать 1,2-24 т БП в год. Поэтому максимальное количество ПАУ в современных донных осадках Мирового океана (более 100 мкг/кг массы сухого веще­ства) обнаружено в тектонически активных зонах, подверженных глубинному термическому воздействию.

По имеющимся сведениям, некоторые морские растения и жи­вотные могут синтезировать ПАУ. В водорослях и морских тра­вах вблизи западного побережья Центральной Америки содержа­ние БП достигает 0,44 мкг/г, а в некоторых ракообразных в Арктике-0,23 мкг/г. Анаэробные бактерии вырабатывают до 8,0 мкг БП из 1 г липидных экстрактов планктона. С другой сто­роны, существуют специальные виды морских и почвенных бакте­рий, разлагающих углеводороды, включая ПАУ.

По оценкам Л. М. Шабада (1973) и А. П. Ильницкого (1975), фоновая концентрация БП, создаваемая в результате синтеза БП растительными организмами и вулканической дея­тельности, составляет: в почвах 5-10 мкг/кг (сухого вещества), в растениях 1-5 мкг/кг, в воде пресноводных водоемов 0,0001 мкг/л. Соответственно выводятся и градации степени за­грязненности объектов окружающей среды (табл. 1.5).

Основные антропогенные источники ПАУ в окружающей среде - это пиролиз органических веществ при сжигании различ­ных материалов, древесины и топлива. Пиролитическое образование ПАУ происходит при температуре 650-900 °С и недостатке кислорода в пламени. Образование БП наблюдалось в процессе пиролиза древесины с максимальным выходом при 300-350 °С (Дикун, 1970).

По оценке М. Зюсса (Г976 г.), глобальная эмиссия БП в 70-х годах составляла около 5000 т в год, причем 72 % приходится на промышленность и 27 % - на все виды открытого сжигания.

Тяжелые металлы (ртуть, свинец, кадмий, цинк, медь, мышьяк и другие) относятся к числу распространенных и весьма токсичных, загрязняющих веществ. Они широко применяются в различных промышленных производствах, поэтому несмотря на очистные ме­роприятия, содержание соединений тяжелых металлов в промыш­ленных сточных водах довольно высокое. Большие массы этих соединений поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, сви­нец и кадмий.

Ртуть переносится в океан с материковым стоком и через атмосферу. При выветривании осадочных и изверженных пород, ежегодно выделяется 3,5 тыс. т ртути. В составе атмосферной пыли содержится около 12 тыс. т ртути, причем значительная часть антропогенного происхождения. В результате извержения вулканов и с атмосферными осадками на поверхность океана ежегодно поступает 50 тыс. т ртути, а при дегазации литосферы - 25-150 тыс. т. Около половины годового промышленного произ­водства этого металла (9-10 тыс. т/год) различными путями по­падает в океан. Содержание ртути в каменном угле и нефти со­ставляет в среднем 1 мг/кг, поэтому при сжигании ископаемого топлива Мировой океан получает более 2 тыс. т/год. Годовая до­быча ртути превышает 0,1 % от ее общего содержания в Мировом океане, однако антропогенный приток уже превосходит естественный вынос реками, что характерно для многих металлов.

В районах, загрязняемых промышленными сточными водами, концентрация ртути в растворе и взвесях сильно повышается. При этом некоторые бентосные бактерии переводят хлориды в высокотоксичную (моно- и ди-) метилртуть CH 3 Hg. Заражение морепродуктов неоднократно приводило к ртутному отравлению, прибрежного населения. К 1977 г. в Японии насчитывалось 2800 жертв болезни Минамата. Причиной послужили отходы пред­приятий по производству хлорвинила и ацетальдегида, на которых, в качестве катализатора использовалась хлористая ртуть. Недостаточно очищенные сточные воды предприятий поступали в за­лив Минамата.

Свинец - типичный рассеянный элемент, содержащийся во всех компонентах окружающей среды: в горных породах, почвах, природных водах, атмосфере, живых организмах. Наконец, свинец, активно рассеивается в окружающую среду в процессе хозяйст­венной деятельности человека. Это выбросы с промышленными и бытовыми стоками, с дымом и пылью промышленных предприя­тий, с выхлопными газами двигателей внутреннего сгорания.

По оценкам В. В. Добровольского (1987), перераспределение масс свинца между сушей и Мировым океаном имеет следующий вид. С. речным стоком при средней концентрации свинца в воде 1 мкг/л в океан водорастворимого свинца выносится около 40 10 3 т/год, в твердой фазе речных взвесей примерно 2800-10 3 т/год, в тонком органическом детрите-10 10 3 т/год. Если учесть, что в узкой прибрежной полосе шельфа оседает более 90 % речных взвесей и значительная часть водорастворимых соединений металлов захватывается гелями оксидов железа, то в результате пелагиаль океана получает лишь около (200- 300) 10 3 т в составе тонких взвесей и (25-30) 10 3 т растворенных соединений.

Миграционный поток свинца с континентов в океан идет не только с речным стоком, но и через атмосферу. С континенталь­ной пылью океан получает (20-30)-10 3 т свинца в год. Поступле­ние его на поверхность океана с жидкими атмосферными осад­ками оценивается в (400-2500) 10 3 т/год при концентрации в дождевой воде 1-6 мкг/л. Источниками свинца, поступающего в атмосферу являются вулканические выбросы (15-30 т/год в составе пелитовых продуктов извержений и 4 10 3 т/год в суб­микронных частицах), летучие органические соединения от расти­тельности (250-300 т/год), продукты сгорания при пожарах ((6-7) 10 3 т/год) и современная промышленность. Производ­ство свинца возросло от 20-10 3 т/год в начале XIX в. до 3500 10 3 т/год к началу 80-х годов XX в. Современный выброс свинца в окружающую среду с индустриальными и бытовыми отходами оценивается в (100-400) 10 3 т/год.

Кадмий, мировое производство которого в 70-х годах достигло 15 10 3 т/год, также поступает в океан с речным стоком и через атмосферу. Объем атмосферного выноса кадмия, по разным оценкам, составляет (1,7-8,6) 10 3 т/год.

Сброс отходов в море с целью захоронения (дампинг). Многие страны, имеющие выход к морю, производят морское захоронение различных материалов и веществ, в частности грунта, вынутого при дноуглубительных работах, бурового шлама, отхо­дов промышленности, строительного мусора, твердых отходов, взрывчатых и химических веществ, радиоактивных отходов и т. п. Объем захоронений составляет около 10 % от всей массы загрязняющих веществ, поступающих в Мировой океан. Так, с 1976 по 1980 г. ежегодно с целью захоронения, чем и опреде­ляется понятие «дампинг», сбрасывалось более 150 млн. т разно­образных отходов.

Основанием для дампинга в море служит способность мор­ской среды к переработке большого количества органических и неорганических веществ без особого ущерба качеству воды. Од­нако эта способность не беспредельна. Поэтому дампинг рассмат­ривается как вынужденная мера, временная дань общества несо­вершенству технологии. Отсюда особую важность приобретают выработка и научное обоснование путей регулирования сбросов отходов в море.

В шламах промышленных производств присутствуют разнооб­разные органические вещества и соединения тяжелых металлов. Бытовой мусор в среднем содержит (на массу сухого вещества) 32-40 % органических веществ, 0,56 % азота, 0,44 % фосфора, 0,155 % цинка, 0,085 % свинца, 0,001 % кадмия, 0,001 ртути. Шламы очистных сооружений коммунальных стоков содержат (на массу сухого вещества) до. 12 % гуминовых веществ, до 3 % общего азота, до 3,8 % фосфатов, 9-13 % жиров, 7-10 % углеводов и загрязнены тяжелыми металлами. Аналогичный состав имеют и материалы дночерпания.

Во время сброса при прохождении материала через столб воды часть загрязняющих веществ переходит в раствор, изменяя качество воды, другая сорбируется частицами взвеси и переходит в донные отложения. Одновременно повышается мутность воды. Наличие органических веществ часто приводит к быстрому рас­ходованию кислорода в воде и нередко к его полному исчезнове­нию, растворению взвесей, накоплению металлов в растворенной форме, появлению сероводорода. Присутствие большого количе­ства органических веществ создает в грунтах устойчивую восста­новительную среду, в которой возникает особый тип иловых вод, содержащих сероводород, аммиак, ионы металлов в восстановлен­ной форме. При этом происходит восстановление сульфатов и нитратов, выделяются фосфаты.

Воздействию сбрасываемых материалов в разной степени под­вергаются организмы нейстона, пелагиали и бентоса. В случае образования поверхностных пленок, содержащих нефтяные угле­водороды и СПАВ, нарушается газообмен на границе воздух- вода. Это приводит к гибели личинок беспозвоночных, личинок и мальков рыб, вызывает увеличение численности нефтеокисляющих и патогенных микроорганизмов. Наличие в воде загрязня­ющей взвеси ухудшает условия питания, дыхания и обмена ве­ществ у гидробионтов, сокращает скорость роста, тормозит по­ловое созревание планктонных ракообразных. Загрязняющие ве­щества, поступающие в раствор, могут аккумулироваться в тканях и органах гидробионтов и оказывать токсическое воздействие на них. Сброс материалов дампинга на дно и длительная повышен­ная мутность придонной воды приводят к засыпке и гибели от удушья прикрепленных и малоподвижных форм бентоса. У вы­живших рыб, моллюсков и ракообразных сокращается скорость роста за счет ухудшения условий питания и дыхания. Нередко из­меняется видовой состав донного сообщества.

При организации системы контроля за сбросами отходов в море решающее значение имеет определение районов дампинга с учетом свойств материалов и характеристик морской среды. Необходимые критерии решения проблемы со­держит «Конвенция по предотвращению загрязнения моря сбро­сами отходов и других материалов» (Лондонская конвенция по дампингу, 1972 г.). Основные требования Конвенции сле­дующие.

1. Оценка количества, состояния и свойств (физических, хи­мических, биохимических, биологических) сбрасываемых мате­риалов, их токсичности, устойчивости, склонности к накоплению и биотрансформации в водной среде и морских организмах. Использование возможностей нейтрализации, обезвреживания и реутилизации отходов.

2. Выбор районов сброса с учетом требований максимального разбавления веществ, минимального распространения их за пределы сброса, благоприятного сочетания гидрологических и гидрофизических условий.

3. Обеспечение удаленности районов сброса от районов нагула рыб и нереста, от мест обитания редких и чувствительных видов гидробионтов, от зон отдыха и хозяйственного использования.

Техногенные радионуклиды. Океану свойственна естественная радиоактивность, обуслов­ленная присутствием в нем 40 К, 87 Rb, 3 H, 14 С, а также радионуклидов рядов урана и тория. Более 90 % естественной радиоак­тивности воды океана приходится на долю 40 К, что составляет 18,5-10 21 Бк. Единица активности в системе СИ - беккерель (Бк), равен активности изотопа, в котором за время 1 с происходит 1 акт распада. Ранее широко использовалась внесистемная единица радиоактивности кюри (Ки), соответствующая актив­ности изотопа, в котором за время 1 с происходит 3,7-10 10 актов распада.

Радиоактивные вещества техногенного происхождения, глав­ным образом продукты деления урана и плутония, стали в боль­ших количествах поступать в океан после 1945 г., т. е. с начала испытаний ядерного оружия и широкого развития промышлен­ного получения делящихся материалов и радиоактивных нукли­дов. Выявляются три группы источников: 1) испытания ядерного оружия, 2) сброс радиоактивных отходов, 3) аварии судов с атомными двигателями и аварии, связанные с использованием, транспортировкой и получением радионуклидов.

Многие радиоактивные изотопы с коротким периодом полураспада, хотя и обнаруживаются после взрыва в воде и морских организмах, в глобальных радиоактив­ных выпадениях почти не встречаются. Здесь в первую очередь присутствуют 90 Sr и 137 Cs с периодом полураспада около 30 лет. Наиболее опасным радионуклидом из непрореагировавших остатков ядерных зарядов является 239 Pu (T 1/2 =24,4-10 3 лет), очень ядовитый как химическое вещество. По мере распада продуктов деления 90 Sr и 137 Cs, он становится основным компонентом загрязнения. К моменту моратория атмосферных испытаний ядерного оружия (1963 г.) активность 239 Рu в окружающей среде со­ставила 2,5-10 16 Бк.

Отдельную группу радионуклидов образуют 3 Н, 24 Na, 65 Zn, 59 Fe, 14 C, 31 Si, 35 S, 45 Ca, 54 Mn, 57,60 Co и другие, возникающие при взаимодействии нейтронов с элементами конструкций и внешней среды. Основными продуктами ядерных реакций с нейтронами в морской среде являются радиоизотопы натрия, калия, фосфора, хлора, брома, кальция, марганца, серы, цинка, происходящие из растворенных в морской воде элементов. Это наведенная актив­ность.

Большая часть радионуклидов, попадающих в морскую среду, имеет постоянно присутствующие в воде аналоги, такие, как 239 Pu, 239 Np, 99 T C) трансплутониевые не характерны для состава морской воды, и живое вещество океана должно приспосабли­ваться к ним заново.

В результате переработки ядерного топлива появляется значительное количество радиоактивных отходов в жидкой, твердой и газообразной формах. Основную массу отходов составляют радиоактивные растворы. Учитывая высокую стоимость переработки и хранения концентратов в специальных хранилищах, некоторые страны предпочитают сливать отходы в океан с речным стоком или сбрасывать их в бетонных блоках на дно глубоководных впадин океанов. Для радиоактивных изотопов Ar, Xe, Em и Т еще не разработаны надежные методы концентрирования, поэтому они могут попадать "в океаны с дождевыми и сточными водами.

При эксплуатации атомных энергетических установок на над­водных и подводных судах, которых насчитывается уже несколько сотен, ежегодно в океан вносят около 3,7-10 16 Бк с ионообменными смолами, около 18,5-10 13 Бк с жидкими отходами и 12,6-10 13 Бк вследствие утечек. Аварийные ситуации также вно­сят значительный вклад в радиоактивность океана. К настоящему времени сумма радиоактивности, привнесенной в океан человеком, не превышает 5,5-10 19 Бк, что еще невелико по сравнению с естественным уровнем (18,5-10 21 Бк). Однако концентрированноcть и неравномерность выпадений радионукли­дов создает серьезную опасность радиоактивного заражения воды и гидробионтов в отдельных районах океана.

2 Антропогенная экология океана новое научное направление в океанологии. В результате антропогенного воздействия в океане возникают дополнительные экологические факторы, способствующие негативной эволюции морских экосистем. Обнаружение этих факторов стимулировало развертывание широких фундаментальных исследований в Мировом океане и зарождение новых научных направлений. К их числу относится антропогенная экология океана. Это новое направление призвано изучать механизмы реагирования организмов на антропогенные воз­действия на уровне клетки, организма, популяции, биоценоза, экосистемы, а также исследовать особенности взаимодействий между живыми организмами и средой обитания в изменившихся условиях.

Объект изучения антропогенной экологии океана - изменение экологических характеристик океана, причем в первую очередь тех изменений, которые имеют значение для экологической оценки состояния биосферы в целом. В основе этих изысканий лежит комплексный анализ состояния морских экосистем с учетом географической зональности и степени антропогенного воздействия.

Антропогенная экология океана применяет для своих целей сле­дующие методы анализа: генетический (оценка канцерогенной и мутагенной опасности), цитологический (изучение клеточного строения морских организмов в нормальном и патологическом состоянии), микробиологический (изучение адаптации микроорга­низмов к токсичным загрязняющим веществам), экологический (познание закономерностей образования и развития популяций и биоценозов в конкретных условиях обитания с целью прогноза их состояния в меняющихся условиях среды), эколого-токсикологический (исследование отклика морских организмов на воздействие загрязнений и определение критических концентраций за­грязняющих веществ), химический (изучение всего комплекса природных и антропогенных химических веществ в морской среде).

Основная задача антропогенной экологии океана состоит в раз­работке научных основ определения критических уровней загряз­няющих веществ в морских экосистемах, оценки ассимиляционной емкости морских экосистем, нормирования антропогенных воздействий на Мировой океан, а также в создании математических моделей экологических процессов для прогноза экологических ситуаций в океане.

Знания о важнейших экологических явлениях в океане (таких, как продукционно-деструкционные процессы, прохождение биогеохимических циклов загрязняющих веществ и т. д.) ограничены недостатком информации. Этим затрудняется прогнозирование экологической ситуации в океане и осуществление природоохран­ных мероприятий. В настоящее время особую значимость приобретает осуществление экологического мониторинга океана, стратегия которого ориентирована на долговременные наблюдения в определенных районах океана с целью создания банка данных, освещающих глобальные перестройки океанических экосистем.

3 Концепция ассимиляционной емкости. По определению Ю. А. Израэля и А. В. Цыбань (1983, 1985), ассимиляционная емкость морской экосистемы А i по данному загрязняющему веществу i (или суммы загрязняющих веществ) и для m-й экосистемы - это максимальная динамическая вмести­мость такого количества загрязняющих веществ (в пересчете на всю зону или единицу объема морской экосистемы), которое может быть за единицу времени накоплено, разрушено, трансформировано (биологическими или химическими превращениями) и вы­ведено за счет процессов седиментации, диффузии или любого другого переноса за пределы объема экосистемы без нарушения ее нормального функционирования.

Суммарное удаление (А i) загрязняющего вещества из морской экосистемы можно записать в виде

где K i - коэффициент запаса, отражающий экологические условия протекания процесса загрязнения в различных зонах морской экосистемы; τ i - время пребывания загрязняющего вещества в морской экосистеме.

Это условие соблюдается при , где С 0 i - критическая концентрация за­грязняющего вещества в морской воде. Отсюда ассимиляционная емкость может быть оценена по формуле (1) при ;.

Все величины, входящие в правую часть уравнения (1) можно непосредственно измерить по данным, полученным в процессе долгопериодных комплексных исследований состояния морской экосистемы. При этом последовательность определения ассимиляционной емкости морской экосистемы к конкретным загрязняющим веществам включает три основных этапа: 1) расчет балансов массы и времени жизни загрязняющих веществ в экосистеме, 2) анализ биотического баланса в экосистеме и 3) оценка критических концентраций воздействия загрязняющих веществ (или экологических ПДК) на функционирование биоты.

Для решения вопросов экологического нормирования антропо­генных воздействий на морские экосистемы расчет ассимиляци­онной емкости наиболее репрезентативен, поскольку он учитывает ассимиляционной емкости предельно допустимая экологическая нагрузка (ПДЭН) водоема ЗВ рассчитывается достаточно просто. Так, при стационарном режиме загрязнения водоема ПДЭН будет равна ассимиляционной емкости.

4 Выводы из оценки ассимиляционной емкости морской экосистемы загрязняющими веществами на примере Балтийского моря. На примере Балтийского моря были рассчитаны значения ассимиляционной емкости для ряда токсичных металлов (Zn, Сu, Pb, Cd, Hg) и органических веществ (ПХБ и БП) (Израэль, Цыбань, Вентцель, Шигаев, 1988).

Средние концентрации токсичных металлов в морской воде оказались на один-два порядка меньше их пороговых доз, а концентрации ПХБ и БП только на порядок меньше. Отсюда коэффициенты запаса для ПХБ и БП оказались меньше, чем для металлов. На первом этапе работы авторы расчета, используя материалы долгопериодных экологических исследований в Балтийском море и литературные источники, определили концентрации загрязняющих веществ в компонентах экосистемы, скорости биоседиментации, потоки веществ на границах экосистемы и активность микробного разрушения органических веществ. Все это позволило составить балансы и рассчитать время «жизни» рассматриваемых веществ в экосистеме. Время «жизни» металлов в экосистеме Балтики оказалось достаточно малым для свинца, кадмия и ртути, несколько большим для цинка и максимальным для меди. Время «жизни» ПХБ и бенз(а)пирена составляет 35 и 20 лет, что определяет необходимость введения системы генетического мониторинга Балтийского моря.

На втором этапе исследований было показано, что наиболее чувствительным к загрязняющим веществам и изменениям экологической обстановки элементом биоты являются планктонные микроводоросли, а следовательно, в качестве процесса - «мишени» следует выбрать процесс первичного продуцирования органического вещества. Поэтому здесь применяются пороговые дозы загрязняющих веществ, установленные для фитопланктона.

Оценки ассимиляционной емкости зон открытой части Балтий­ского моря показывают, что существующий сток цинка, кадмия и ртути соответственно в 2, 20 и 15 раз меньше минимальных значений ассимиляционной емкости экосистемы к этим металлам и не представляет прямой опасности первичному продуцированию. В то же время поступление меди и свинца уже превышает их ассимиляционную емкость, что требует введения специальных мер по ограничению стока. Современное поступление БП еще не достигло минимального значения ассимиляционной емкости, а ПХБ превышает ее. Последнее говорит о настоятельной необходимости дальнейшего снижения сбросов ПХБ в Балтийское море.



Похожие статьи
 
Категории