Живое вещество. Функции живого вещества в биосфере

11.10.2019

Чтобы объяснить процессы, осуществляющиеся в пределах нашей планеты, ученым потребовалось много сотен лет. Постепенно накапливались знания, рос теоретический и фактологический материал. Сегодня людям удается найти объяснение многим природным явлениям, вмешаться в их протекание, изменить или направить.

То, какую роль во всех механизмах природы играет живой мир, также было ясно не сразу. Однако русский философ, биогеохимик В. И. Вернадский сумел создать теорию, которая стала основой и остается таковой по сей день. Именно она объясняет, что собой представляет вся наша планета, каковы в ней взаимосвязи между всеми участниками. И самое главное, именно эта теория дает ответ на вопрос о роли живых существ на планете Земля. Она получила название теории о Земли.

Биосфера и ее структура

Биосферой ученый предложил называть всю ту область живого и неживого, которая находится в тесном контакте и в результате совместной деятельности способствует формированию определенных геохимических компонентов природы.

То есть в биосферу входят следующие структурные части Земли:

  • нижняя часть атмосферы до озонового слоя;
  • вся гидросфера;
  • верхний уровень литосферы - почва и ниже расположенные слои, до грунтовых вод включительно.

То есть это все те области, которые способны заселяться живыми организмами. Все они, в свою очередь, представляют собой совокупную биомассу, которая носит название живого вещества биосферы. Сюда относятся представители всех царств природы, а также человек. Свойства и функции живого вещества являются определяющими при характеристике биосферы в целом, так как именно оно - основной ее компонент.

Однако помимо живого, выделяют еще несколько типов веществ, составляющих рассматриваемую нами оболочку Земли. Это такие, как:

  • биогенное;
  • косное;
  • биокосное;
  • радиоактивное;
  • космическое;
  • свободные атомы и элементы.

Все вместе данные виды соединений и формируют окружающую среду для биомассы, условия жизни для нее. При этом представители царств природы сами оказывают немалое влияние на формирование многих видов перечисленных веществ.

В целом, все обозначенные компоненты биосферы являются совокупной массой складывающих природу элементов. Именно они вступают в тесные взаимодействия, осуществляя круговорот энергии, веществ, накапливая и перерабатывая многие соединения. Основная же единица - живое вещество. Функции живого вещества различны, но все очень важны и нужны для поддержания естественного состояния планеты.

Основатель учения о биосфере

Тот, кто создал понятие "биосфера", развил его, структурировал и полностью раскрыл, обладал незаурядным мышлением, способностью анализировать и сопоставлять факты и данные и делать логические умозаключения. Таким человеком в свое время стал В. И. Вернадский. Великий человек, естествоиспытатель, академик и ученый, основатель многих школ. Его труды стали базовой основой, на которой строятся все теории до сих пор.

Он является создателем всей биогеохимии. Его заслугой является создание минерально-сырьевой базы России (тогда СССР). Его учениками были известные в будущем ученые России и Украины.

Прогнозы Вернадского о главенствующем положении людей в системе органического мира и о том, что биосфера эволюционирует в ноосферу, имеют все основания сбыться.

Живое вещество. Функции живого вещества биосферы

Как мы уже обозначали выше, живым веществом рассматриваемой считается вся совокупность организмов, принадлежащих ко всем царствам природы. Особое же положение среди всех занимают люди. Причинами этого стало:

  • потребительская позиция, а не продуцирующая;
  • развитие разума и сознания.

Все остальные представители - это живое вещество. Функции живого вещества были разработаны и указаны Вернадским. Он отводил следующую роль организмам:

  1. Окислительно-восстановительная.
  2. Деструктивная.
  3. Транспортная.
  4. Средообразующая.
  5. Газовая.
  6. Энергетическая.
  7. Информационная.
  8. Концентрационная.

Самые основные функции живого вещества биосферы - газовая, энергетическая и окислительно-восстановительная. Однако и остальные тоже являются важными, обеспечивающими сложные процессы взаимодействия между всеми частями и элементами живой оболочки планеты.

Рассмотрим каждую из функций более подробно, чтобы понять, что именно подразумевается и в чем суть.

Окислительно-восстановительная функция живого вещества

Проявляется в многочисленных биохимических преобразованиях веществ внутри каждого живого организма. Ведь во всех, начиная с бактерий и заканчивая крупными млекопитающими, происходят ежесекундные реакции. В результате одни вещества превращаются в другие, какие-то распадаются на составные части.

Результатом таких процессов для биосферы является формирование биогенного вещества. Какие соединения можно привести в пример?

  1. Карбонатные породы (мел, мрамор, известняки) - продукт жизнедеятельности моллюсков, многих других морских и наземных обитателей.
  2. Залежи кремниевых пород - результат многовековых реакций, происходящих в панцирях и раковинах животных океанского дна.
  3. Уголь и торф - результат биохимических преобразований, происходящих с растениями.
  4. Нефть и другие.

Поэтому химические реакции - это основа создания многих полезных человеку и природе веществ. В этом заключаются функции живого вещества в биосфере.

Концентрационная функция

Если говорить о раскрытии понятия данной роли вещества, то следует указать на ее близкое родство с предыдущей. Проще говоря, концентрационная функция живого вещества заключается в накоплении внутри тела тех или иных элементов, атомов, соединений. В результате происходит формирование тех самых горных пород, полезных ископаемых и минералов, о которых упоминалось выше.

Накапливать в себе какие-то соединения способно каждое существо. Однако для всех степень выраженности этого разная. Например, все накапливают в себе углерод. Но далеко не каждый организм способен концентрировать около 20% железа, как это делают железобактерии.

Можно привести еще несколько примеров, четко иллюстрирующих данную функцию живого вещества.

  1. Диатомовые водоросли, радиолярии - кремний.
  2. - марганец.
  3. Растение лобелия вздутая - хром.
  4. Растение солянка - бор.

Помимо элементов, многие представители живых существ способны после отмирания формировать целые комплексы веществ.

Газовая функция вещества

Эта роль одна из основных. Ведь газообмен - жизнеобразующий процесс для всех существ. Если говорить о биосфере в целом, то газовая функция живого вещества начинается с деятельности растений, которые в улавливают диоксид углерода и выделяют достаточное количество кислорода.

Достаточное для чего? Для жизни всех тех существ, которые не способны производить его самостоятельно. А это все животные, грибы, большинство бактерий. Если же говорить о газовой функции животных, то она заключается в потреблении кислорода и выделении в окружающую среду углекислого газа в процессе дыхания.

Так создается общий круговорот, который лежит в основе жизни. Учеными доказано, что за много тысячелетий растения и другие живые существа сумели полностью модернизировать и подстроить под себя атмосферу планеты. Произошло следующее:

  • концентрация кислорода стала достаточной для жизни;
  • сформировался который защищает все живое от губительного космического и ультрафиолетового излучения;
  • состав воздуха стал таким, какой нужен для большинства существ.

Поэтому газовая функция живого вещества биосферы и считается одной из самых главных.

Транспортная функция

Подразумевает под собой размножение и расселение организмов по разным территориям. Существуют определенные экологические законы, которым подчиняются основы распространения и транспортировки существ. Согласно им, каждая особь занимает свой ареал обитания. Существуют и конкурентные взаимоотношения, которые приводят к заселению и освоению новых территорий.

Таким образом, функции живого вещества в биосфере - это размножение и расселение с последующим формированием новых признаков.

Деструктивная роль

Это еще одна немаловажная функция, которая характерна для живых существ биосферы. Заключается она в способности распадаться на простые вещества после отмирания, то есть остановки жизненного цикла. Пока организм живет, в нем активны сложные молекулы. Когда наступает смерть, начинаются процессы деструктуризации, распада на простые составные части.

Это осуществляется специальной группой существ, именуемых детритофагами или редуцентами. К ним относятся:

  • некоторые черви;
  • бактерии;
  • грибки;
  • простейшие и другие.

Средообразующая функция

Основные функции живого вещества были бы неполными, если бы мы не указали средообразование. Что это значит? Мы уже указывали на то, что живые существа в процессе эволюции создали для себя атмосферу. То же самое они сделали и с окружающей средой.

Разрыхляя и насыщая землю минеральными соединениями, органикой, они создали для себя пригодный для жизни плодородный слой - почву. То же можно сказать и о химическом составе воды океанов и морей. То есть живые существа самостоятельно формируют для себя среды жизни. В этом и проявляется их средообразующая функция в биосфере.

Информационная роль живого вещества

Эта роль характерна именно для живых организмов, причем чем более высоко он развит, тем большую роль в качестве носителя и переработчика информации выполняет. Ни один неодушевленный предмет не способен запоминать, "записывать" на подсознании и воспроизводить в дальнейшем информацию любого рода. Это могут делать лишь живые существа.

Речь идет не только о способности говорить и мыслить. Информационная функция подразумевает явление сохранения и передачи определенных наборов знаний и признаков по наследству.

Энергетическая функция

Энергия - это самый главный источник силы, за счет которого существует живое вещество. Функции живого вещества проявляются, прежде всего, в способности перерабатывать энергию биосферы в разные формы, начиная с солнечной и заканчивая тепловой и электрической.

Больше никто так аккумулировать и изменять излучение от Солнца не может. Первым звеном здесь стоят, конечно, растения. Именно они поглощают солнечный свет непосредственно всей поверхностью зеленых Затем преобразуют его в энергию химических связей, доступную для животных. Последние же переводят ее в разные формы:

  • тепловую;
  • электрическую;
  • механическую и другие.

Одним из центральных звеньев концепции биосферы является учение о живом веществе. Исследуя процессы миграции атомов в биосфере, В. И. Вернадский подошел к вопросу о генезисе (происхождение, возникновение) химических элементов в земной коре, а после этого и к необходимости объяснить устойчивость соединений, из которых состоят организмы. Анализируя проблему миграции атомов, он пришел к выводу, что “нигде не существуют органические соединения, независимые от живого вещества”. Позже он формулирует понятие “живого вещества”: “Живое вещество биосферы есть совокупность ее живых организмов… Я буду называть совокупность организмов, сведенных к их весу, химическому составу и энергии, живым веществом”. Главное предназначение живого вещества и его неотъемлимый атрибут – накопление свободной энергии в биосфере. Обычная геохимическая энергия живого вещества производится прежде всего путем размножения.

Научные идеи В. И. Вернадского о живом веществе, о космичности жизни, о биосфере и переходе ее в новое качество – ноосферу своими корнями уходят в 19-начало 20 в., когда философы и естествоиспытатели предприняли первые попытки осмыслить роль и задачи человека в общей эволюции Земли. Именно их усилиями человек начал свое продвижение к вершинам естественной эволюции живого, постепенно занимая экологическую нишу, отведенную ему природой.

В 30-е годы В. И. Вернадский из общей массы живого вещества выделяет человечество как его особую часть. Такое обособление человека от всего живого стало возможным по трем причинам. Во-первых, человечество является не производителем, а потребителем биогеохимической энергии. Такой тезис требовал пересмотра геохимических функций живого вещества в биосфере. Во-вторых, масса человечества, исходя из данных демографии, не является постоянным количеством живого вещества. И в-третьих, его геохимические функции характеризуются не массой, а производственной деятельностью. Характер усвоения человечеством биогеохимической энергии определяются разумом человека. С одной стороны, человек – это кульминация бессознательной эволюции, “продукт” спонтанной деятельности природы, а с другой – зачинатель нового, разумно направленного этапа самой эволюции.

Какие же характерные особенности присущи живому веществу? Прежде всего это огромная свободная энергия. В процессе эволюции видов биогенная миграция атомов, т. е. энергия живого вещества биосферы, увеличилась во много раз и продолжает расти, ибо живое вещество перерабатывает энергию солнечных излучений, атомную энергию радиоактивного распада и космическую энергию рассеянных элементов, приходящих из нашей Галактики. Живому веществу присуща также высокая скорость протекания химических реакций по сравнению с веществом неживым, где похожие процессы идут в тысячи и миллионы раз медленнее. К примеру, некоторые гусеницы в сутки могут переработать пищи в 200 раз больше, чем весят сами, а одна синица за день съедает столько гусениц, сколько весит сама

Для живого вещества характерно то, что слагающие его химические соединения, главнейшими из которых являются белки, устойчивы только в живых организмах. После завершения процесса жизнедеятельности исходные живые органические вещества разлагаются до химических составных частей. Живое вещество существует на планете в форме непрерывного чередования поколений, благодаря чему вновь образовавшееся генетически связано с живым веществом прошлых эпох. Это главная структурная единица биосферы, определяющая все другие процессы поверхности земной коры. Для живого вещества характерно наличие эволюционного процесса. Генетическая информация любого организма зашифрована в каждой его клетке. В. И. Вернадский классифицировал живое вещество на однородное и неоднородное. Первое в его представлении – это родовое, видовое вещество и т. п., а второе представлено закономерными смесями живых веществ. Это лес, болото, степь, т. е. биоценоз. Характеризовать живое вещество ученый предлагал на основе таких количественных показателей, как химический состав, средний вес организмов и средняя скорость заселения ими поверхности земного шара.

В. И. Вернадский приводит средние цифры скорости «передачи жизни в биосфере». Время захвата данным видом всей поверхности нашей планеты у разных организмов может быть выражено следующими цифрами (сутки):

Бактерия холеры 1,25

Инфузория 10,6 (максимум)

Диатомовые 16,8 (максимум)

Зеленый 166-183 (среднее)

планктон

Насекомые 366

Рыбы 2159 (максимум)

Цветковые растения 4076

Птицы (куры) 5600-6100

Млекопитающие:

дикая свинья 37600

слон индийский 376000

Жизнь на нашей планете существует в неклеточной и клеточной формах.

Неклеточная форма живого вещества представлена вирусами, которые лишены раздражимости и собственного синтеза белка. Простейшие вирусы состоят лишь из белковой оболочки и молекулы ДНК или РНК, составляющей сердцевину вируса. Иногда вирусы выделяют в особое царство живой природы – Vira. Они могут размножаться только внутри определенных живых клеток. Вирусы повсеместно распространены в природе и являются угрозой для всего живого. Поселяясь в клетках живых организмов, они вызывают их смерть. Описано около 500 вирусов, поражающих теплокровных позвоночных, и около 300 вирусов, уничтожающих высшие растения. Более половины болезней человека обязаны своим развитием мельчайшим вирусам (они в 100 раз меньше бактерий). Это полиомиелит, оспа, грипп, инфекционный гепатит, желтая лихорадка и др.

Клеточные формы жизни представлены прокариотами и эукариотами. К прокариотам относятся различные бактерии. Эукариоты – это все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие.

Живое вещество - живые организмы, населяющие нашу планету.

Масса живого вещества составляет лишь 0,01% от массы всей биосферы. Тем не менее, живое вещество биосферы - это главнейший ее компонент.

Признаки (свойства) живой материи, отличающие ее от неживой:

Определенный химический состав . Живые организмы со-стоят из тех же химических элементов, что и объекты неживой природы, однако соотношение этих элементов различно. Основными элементами живых существ являются С, О, N и Н.

Клеточное строение. Все живые организмы, кроме вирусов, имеют клеточное строение.

Обмен веществ и энергозависимость. Живые организмы являются открытыми системами, они зависят от поступления в них из внешней среды веществ и энергии.

Саморегуляция (гомеостаз). Живые организмы обладают способностью поддерживать гомеостаз -- постоянство своего химического состава и интенсивность обменных процессов.

Раздражимость. Живые организмы проявляют раздражимость, то есть способность отвечать на определенные внешние воздействия специфическими реакциями.

Наследственность. Живые организмы способны передавать признаки и свойства из поколения в поколение с помощью носителей информации - молекул ДНК и РНК.

  • 7. Изменчивость. Живые организмы способны приобретать новые признаки и свойства.
  • 8. Самовоспроизведение (размножение). Живые организмы способны размножаться - воспроизводить себе подобных.
  • 9. Индивидуальное развитие (онтогенез). Каждой особи свойственен онтогенез - индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления). Развитие сопровождается ростом.
  • 10. Эволюционное развитие (филогенез). Живой материи в целом свойственен филогенез -- историческое развитиежизни на Земле с момента ее появления до настоящего времени.

Адаптации. Живые организмы способны адаптироваться, то есть приспосабливаться к условиям окружающей среды.

Ритмичность. Живые организмы проявляют ритмичность жизнедеятельности (суточную, сезонную и др.).

Целостность и дискретность . С одной стороны, вся живая материя целостна, определенным образом организована подчиняется общим законам; с другой стороны, любая биологическая система состоит из обособленных, хотя и взаимосвязанных элементов.

Иерархичность. Начиная от биополимеров (белков и нуклеиновых кислот) и кончая биосферой в целом, все живое находится в определенной соподчиненности. Функционирование биологических систем на менее сложном уровне делает возможным существование более сложного уровня.

Окружающий нас мир живых организмов биосферы представляет собой сочетание различных биологических систем разной структурной упорядоченности и разного организационного положения.

Иерархичность организации живой материи позволяет условно подразделить ее на ряд уровней.

Уровень организации живой материи - это функциональное место биологической структуры определенной степени сложности в общей иерар-хии живого.

В настоящее время выделяют 9 уровней организации живой материи:

Молекулярный (на этом уровне происходит функционирование биологически активных крупных молекул, таких как белки, нуклеиновые кислоты и др.);

Субклеточный (надмолекулярный). На этом уровне живая материя организуется в органоиды: хромосомы, клеточную мембрану и др. субклеточные структуры.

Клеточный . На этом уровне живая материя представлена клетками. Клетка является элементарной структурной и функциональной единицей живого.

Органно-тканевый . На этом уровне живая материя орга-низуется в ткани и органы. Ткань - совокупность клеток, сход-ных по строению и функциям, а также связанных с ними меж-клеточных веществ. Орган -- часть многоклеточного организ-ма, выполняющая определенную функцию или функции.

Организменный (онтогенетический). На этом уровнехарактеризующийся всеми ее признаками.

Популяционно-видовой. На этом уровне живая материяже вида. Вид -- совокупность особей (популяций особей), спо-собных к скрещиванию с образованием плодовитого потом-ства и занимающих в природе определенную область (ареал).

Биоценотический. На этом уровне живая материя образуетбиоценозы. Биоценоз - совокупность популяции разных видов, обитающих на определенной территории.

Биогеоценотический . На этом уровне живая материя формирует
биогеоценозы. Биогеоценоз - совокупность биоценоза и абиотических факторов среды обитания (климат, почва).

Биосферный. На этом уровне живая материя формирует биосферу. Биосфера - оболочка Земли, преобразованная деятельностью живых организмов.

Химический состав живых организмов можно выразить в двух видах: атомный и молекулярный. Атомный (элементный) состав характеризует соотношение атомов элементов, входящих в живые организмы. Молекулярный (вещественный) состав отражает соотношение молекул веществ.

По относительному содержанию элементы, входящие в состав живых организмов, принято делить на три группы:

Макроэлементы - О, С, Н, N (в сумме около 98-99%, их
еще называют основные), Са, К, Si, Mg, P, S, Na, Cl, Fe (всумме около 1-2%). Макроэлементы составляют основную мас-су процентного состава живых организмов.

Микроэлементы - Мn, Со, Zn, Cu, В, I, F и др. Их суммарное содержание в живом веществе составляет порядка 0,1 %

Ультрамикроэлементы -- Se, U, Hg, Rа, Au, Ag и др. Их содержание в живом веществе очень незначительно (менее 0,01%), а физиологическая роль для большинства из них не раскрыта.

Химические элементы, которые состав живых организмов и при этом выполняют биологические функции, называются биогенными. Даже те из них, которые содержатся в клетках в ничтожно малых количествах, ничем не могут быть заменены и совершенно необходимы для жизни.

Химические элементы входят в состав клеток в виде ионов и молекул неорганических и органических веществ. Важнейшие неорганические вещества в клетке -- вода и минеральные соли, важнейшие органические вещества -- углеводы, липиды, белки и нуклеиновые кислоты

Углеводы - органические соединения, содержащие в своем составе углерод, водород и кислород. Они подразделяются на простые (моносахариды) и сложные (полисахариды). Углеводы являются основным источником энергии всех форм клеточной деятельности. Они участвуют в построении прочных тканей растений (в частности, целлюлозы) и играют роль запасных питательных веществ в организмах. Углеводы являются первичным продуктом фотосинтеза зеленых растений.

Липиды - это жироподобные вещества, плохо растворимые в воде (состоят из атомов углерода и водорода). Липиды участвуют в построении клеточных перегородок (мембран), плохо проводят тепло, выполняя тем самым защитную функцию. Кроме того, липиды являются запасными питательными веществами.

Белки представляют собой сочетание протеиногенных аминокислот (20 штук) и на 30-50% состоят из АК. Белки имеют большие размеры, являясь по своей сути макромолекулами. Белки выполняют роль естественных катализаторов протекания химических процессов. В состав белков также входят металлы, такие как железо, магний, марганец.

Нуклеиновые кислоты (НК) формируют ядро клетки. Различают 2 основных вида НК: ДНК - дезоксирибонуклеиновая кислота и РНК - рибонуклеиновая кислота. НК регулируют процесс синтеза, осуществляют передачу наследственной информации из поколения в поколение.

Все живые организмы, обитающие на Земле, представляют собой открытые системы, зависящие от поступления вещества и энергии извне. Процесс потребления вещества и энергии называется питанием. Все живые организмы по способу питания подразделяются на автотрофные и гетеротрофные.

Автотрофы (автотрофные организмы) - организмы, использующие в качестве источника углерода углекислый газ (растения и некоторые бактерии). Иначе говоря, это организмы, способные создавать органические соединения из неорганических - углекислого газа, воды, минеральных солей (к ним относятся прежде всего растения, осуществляющие фотосинтез).

Гетеротрофы (гетеротрофные организмы) - организмы, использующие в качестве источника углерода органические соединения (животные, грибы и большинство бактерий). Иначе говоря, это организмы, не способные создавать органические вещества из неорганических, а нуждающиеся в готовых органических веществах (микроорганизмы и животные).

Четкой границы между авто- и гетеротрофами не существует. Например, эвгленовые организмы (жгутиковые) сочетают автотрофный и гетеротрофный способы питания.

По отношению к свободному кислороду организмы делятся на три группы: аэробы, анаэробы и факультативные формы.

Аэробы - организмы, способные жить только в кислородной среде (животные, растения, некоторые бактерии и грибы).

Анаэробы - организмы, неспособные жить в кислородной среде (некоторые бактерии).

Факультативные формы - организмы, способные жить как в присутствии кислорода, так и без него (некоторые бактерии и грибы).

В настоящее время весь мир живых существ подразделяется на 3 большие систематические группы:

Наибольшая концентрация жизни в биосфере наблюдается на границах соприкосновения земных оболочек: атмосферы и литосферы (поверхность суши), атмосферы и гидросферы (поверхность океана), и особенно на границах трех оболочек - атмосферы, гидросферы и литосферы (прибрежные зоны). Эти места наибольшей концентрации жизни В.И. Вернадский назвал «пленками жизни». Вверх и вниз от этих поверхностей концентрация живой материи уменьшается.

К основным уникальным особенностям живого вещества, обуславливающим его крайне высокую преобразующую деятельность, можно отнести следующие:

Способность быстро занимать (осваивать) все свободное пространство. Это свойство связано как с интенсивным размножением, так и со способностью организмов интенсивно увеличивать поверхность своего тела или образуемых ими сообществ.

Движение не только пассивное, но и активное, то есть не только под действием силы тяжести, гравитационных сил и т.п., но и против течения воды, силы тяжести, движения воздушных потоков и т.п.

Устойчивость при жизни и быстрое разложение после смерти (включение в круговороты веществ). Благодаря саморегуляции живые организмы способны поддерживать постоянный химический состав и условия внутренней среды, несмотря на значительные изменения условий внешней среды. После смерти эта способность утрачивается, а органические остатки очень быстро разрушаются. Образовавшиеся органические и неорганические вещества включаются в круговороты.

Высокая приспособительная способность (адаптация) к различным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной, организменной), но и крайне трудных по физико-химическим параметрам условий (микроорганизмы встречаются в термальных источниках с температурой до 140 о С, в водах атомных реакторов, в бескислородной среде).

Феноменально высокая скорость протекания реакций. Она на несколько порядков значительнее, чем в неживом веществе.

Высокая скорость обновления живого вещества. Только небольшая часть живого вещества (доли процента) законсервирована в виде органических остатков, остальная же постоянно включается в процессы круговорота.

Все перечисленные свойства живого вещества обуславливаются концентрацией в нём больших запасов энергии.

Выделяют следующие основные геохимические функции живого вещества:

Энергетическая (биохимическая) - связывание и запасание солнечной энергии в органическим веществе и последующее рассеяние энергии при потреблении и минерализации органического вещества. Эта функция связана с питанием, дыханием, размножением и другими процессами жизнедеятельности организмов.

Газовая - способность живых организмов изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. С газовой функцией связывают два переломных периода (точки) в развитии биосферы. Первая из них относится ко времени, когда содержание кислорода в атмосфере достигло примерно 1% от современного уровня. Это обусловило появление первых аэробных организмов (способных жить только в среде, содержащей кислород). Второй переломный период связывают со временем, когда концентрация кислорода достигла примерно 10% от современной. Это создало условия для синтеза озона и образования озонового слоя в верхних слоях атмосферы, что обусловило возможность освоения организмами суши.

Концентрационная - «захват» из окружающей среды живыми организмами и накопление в них атомов биогенных химических элементов. Концентрационная способность живого вещества повышает содержание атомов химических элементов в организмах по сравнению с окружающей средой на несколько порядков. Результат концентрационной деятельности живого вещества - образование залежей горючих ископаемых, известняков, рудных месторождений и т.п.

Окислительно -восстановительная - окисление и восстановление различных веществ с участием живых организмов. Под влиянием живых организмов происходит интенсивная миграция атомов элементов с переменной валентностью (Fe, Mn, S, P, N и др.), создаются их новые соединения, происходит отложение сульфидов и минеральной серы, образование сероводорода

Деструктивная - разрушение организмами и продуктами их жизнедеятельности как остатков органического вещества, так и косных веществ. Наиболее существенную роль в этом отношении выполняют редуценты (деструкторы) - сапрофитные грибы и бактерии.

Транспортная - перенос вещества и энергии в результате активной формы движения организмов.

Средообразующая - преобразование физико-химических параметров среды. Результатом средообразующей функции является и вся биосфера, и почва как одна из сред обитания, и более локальные структуры.

Рассеивающая - функция, противоположная концентрационной - рассеивание веществ в окружающей среде. Например, рассеивание вещества при выделении организмами экскрементов, смене покровов и т.п.

Информационная - накопление живыми организмами определённой информации, закрепление её в наследственных структурах и передача последующим поколениям. Это одно из проявлений адаптационных механизмов.

Биогеохимическая деятельность человека - превращение и перемещение веществ биосферы в результате человеческой деятельности для хозяйственных и бытовых нужд человека. Например, использование концентраторов углерода - нефти, угля, газа.

Таким образом, биосфера представляет собой сложную динамическую систему, осуществляющую улавливание, накопление и перенос энергии путём обмена веществ между живым веществом и окружающей средой.

Масса живого вещества составляет лишь 0,01% от массы всей биосферы. Тем не менее, живое вещество биосферы – это главнейший ее компонент.

Наибольшая концентрация жизни в биосфере наблюдается на границах соприкосновения земных оболочек: атмосферы и литосферы (поверхность суши), атмосферы и гидросферы (поверхность океана), и особенно на границах трех оболочек – атмосферы, гидросферы и литосферы (прибрежные зоны). Эти места наибольшей концентрации жизни В.И. Вернадский назвал «пленками жизни». Вверх и вниз от этих поверхностей концентрация живой материи уменьшается.

Все системы, изучаемые экологией, включают в себя биотические компоненты, в сумме образующие живое вещество.

Термин "живое вещество" введён в литературу В. И. Вернадским, под которым он понимал совокупность всех живых организмов, выраженную через массу, энергию и химический состав. Жизнь на Земле – самый выдающийся процесс на её поверхности, получающий живительную энергию Солнца и вводящий в движение едва ли не все химические элементы таблицы Менделеева.

По современным оценкам, общая масса живого вещества в биосфере составляет около 2400 млрд. тонн (табл.).

Таблица Общая масса живого вещества в биосфере

Масса живого вещества поверхности континентов в 800 раз превышает биомассу Мирового океана. На поверхности континентов растения резко преобладают по своей массе над животными. В океане мы наблюдаем обратное соотношение: 93,7 % биомассы моря приходится на долю животных. Это связано главным образом с тем, что в морской среде существует наиболее благоприятные условия для питания животных. Мельчайшие растительные организмы, составляющие фитопланктон и обитающие в освещенной зоне морей и океанов, быстро поедаются морскими животными и, таким образом, переход органических веществ из растительной формы в животную резко сдвигает биомассу в сторону преобладания животных.

Всё живое вещество по своей массе занимает ничтожное место по сравнению с любой из верхних геосфер земного шара. Например, масса атмосферы больше в 2150, гидросферы – в 602000, а земной коры – в 1670000 раз.

Однако по своему активному воздействию на окружающую среду живое вещество занимает особое место и качественно резко отличается от других неорганических природных образований, входящих в состав биосферы. Прежде всего, это связано с тем, что живые организмы благодаря биологическим катализаторам (ферментам) совершают, по выражению академика Л.С. Берга, с физико-химической точки зрения что-то невероятное. Например, они способны фиксировать в своём теле молекулярный азот атмосферы при обычных для природной среды значениях температуры и давления.

В промышленных же условиях связывание атмосферного азота до аммиака (NH 3) требует температуры порядка 500 о С и давления 300-500 атмосфер. В живых организмах на несколько порядков увеличиваются скорости химических реакций в процессе обмена веществ.

В.И. Вернадский в связи с этим назвал живое вещество формой чрезвычайно активированной материи.

К основным свойствам живого можно отнести:

1. Единство химического состава. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновые кислоты, белки, липиды).

2. Дискретность и целостность. Любая биологическая система (клетка, организм, вид и т.д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят отдельные органы, связанные структурно и функционально в единое целое).

3. Структурная организация. Живые системы способны создавать порядок из хаотичного движения молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенном порядке, направленном на поддержание постоянства внутренней среды - гомеостаза.

4. Обмен веществ и энергии. Живые организмы - открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды - гомеостаза. Например, продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составили начальное звено в длинной цепи реакций.

5. Самовоспроизведение. Самообновление. Время существования любой биологической системы ограничено. Для поддержания жизни происходит процесс самовоспроизведения, связанный с образованием новых молекул и структур, несущих генетическую информацию, находящуюся в молекулах ДНК.

6. Наследственность. Молекула ДНК способна хранить, передавать наследственную информацию, благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями.

7. Изменчивость. При передаче наследственной информации иногда возникают различные отклонения, приводящие к изменению признаков и свойств у потомков. Если эти изменения благоприятствуют жизни, они могут закрепиться отбором.

8. Рост и развитие. Организмы наследуют определенную генетическую информацию о возможности развития тех или иных признаков. Реализация информации происходит во время индивидуального развития - онтогенеза. На определенном этапе онтогенеза осуществляется рост организма, связанный с репродукцией молекул,клетоки других биологических структур. Рост сопровождается развитием.

9. Раздражимость и движение. Все живое избирательно реагирует на внешние воздействия специфическими реакциями благодаря свойству раздражимости. Организмы отвечают на воздействие движением. Проявление формы движения зависит от структуры организма.

К основным уникальным особенностям живого вещества , обусловливающим его высокую преобразующую деятельность , можно отнести:

1. Способность быстро занимать свободное пространство , что связано как с интенсивным размножением, так и со способностью организмов интенсивно увеличивать поверхность своего тела или образуемых ими сообществ (всюдность жизни ).

2. Движение не только пассивное (под действием силы тяжести), но и активное . Например, против течения воды, силы тяжести, движения воздушных потоков.

3. Устойчивость при жизни и быстрое разложение после смерти (включение в круговороты), сохраняя при этом высокую физико-химическую активность.

4. Высокая приспособительность (адаптация) к различным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной), но и крайне трудных по физико-химическим параметрам.

5. Феноменально высокая скорость протекания химических реакций . Она на несколько порядков значительнее, чем в неживой природе. Об этом свойстве можно судить по скорости переработки вещества организмами в процессе жизнедеятельности. Например, гусеницы некоторых насекомых перерабатывают за день количество вещества, которое в 100 – 200 раз превышает вес их тела.

6. Высокая скорость обновления живого вещества . Подсчитано, что в среднем для биосферы она составляет около 8 лет (для суши 14 лет, а для океана, где преобладают организмы с коротким периодом жизни – 33 дня).

7. Разнообразие форм, размеров и химических вариантов , значительно превышающее многие контрасты в неживом, косном веществе.

8. Индивидуальность (в мире нет одинаковых видов и даже особей).

Все перечисленные и другие свойства живого вещества обусловливаются концентрацией в нём больших запасов энергии. В.И. Вернадский отмечал, что по энергетической насыщенности с живым веществом может соперничать только лава, образующаяся при извержении вулканов

Функции живого вещества . Всю деятельность живого вещества в биосфере можно, с определённой долей условности, свести к нескольким основополагающим функциям, которые позволяют значительно дополнить представление о его преобразующей биосферно-геологической деятельности.

1. Энергетическая . Эта одна из важнейших функций связана с запасанием энергии в процессе фотосинтеза, передачей её по цепям питания и рассеиванием в окружающем пространстве.

2. Газовая – связана со способностью изменять и поддерживать определённый газовый состав среды обитания и атмосферы в целом.

3. Окислительно-восстановительная – связана с ростом под влиянием живого вещества интенсивности процессов как окисления и восстановления.

4. Концентрационная – способность организмов концентрировать в своём теле рассеянные химические элементы, повышая их содержание на несколько порядков, по сравнению с окружающей средой, а в теле отдельных организмов – в миллионы раз. Результат концентрационной деятельности – залежи горючих ископаемых, известняки, рудные месторождения и т.п.

5. Деструктивная – разрушение организмами и продуктами их жизнедеятельности, в том числе и после их смерти, как самих остатков органического вещества, так и косных веществ. Основной механизм этой функции связан с круговоротом веществ. Наиболее существенную роль в этом отношении выполняют низшие формы жизни – грибы, бактерии (деструкторы, редуценты).

6. Транспортная – перенос вещества и энергии в результате активной формы движения организмов. Часто такой перенос осуществляется на колоссальные расстояния, например, при миграциях и кочевках животных.

7. Средообразующая . Эта функция в значительной мере представляет результат совместного действия других функций. С ней, в конечном счете, связано преобразование физико-химических параметров среды. Эту функцию можно, рассматривать в широком и более узком планах. В широком понимании результатом данной функции является вся природная среда. Она создана живыми организмами, они же и поддерживают в относительно стабильном состоянии её параметры практически во всех геосферах. В более узком плане средообразующая функция живого вещества проявляется, например, в образовании и сохранение почв от разрушения (эрозии), в очистке воздуха и вод от загрязнений, в усилении питания источников грунтовых вод и т. п.

8. Рассеивающая функция, противоположная концентрационной. Она проявляется через трофическую (питательную) и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, гибели организмов при разного рода перемещениях в пространстве, смене покровов.

9. Информационная функция живого вещества выражается в том, что живые организмы и их сообщества накапливают информацию, закрепляют её в наследственных структурах и передают последующим поколениям. Это одно из проявлений адаптационных механизмов.

Несмотря на огромное разнообразие форм, всё живое вещество физико-химически едино . И в этом состоит один из основных законов всего органического мира – закон физико-химического единства живого вещества. Из него следует, что нет такого физического или химического агента, который был бы гибелен для одних организмов и абсолютно безвреден для других. Разница лишь количественная – одни организмы более чувствительны, другие менее, одни приспосабливаются быстрее, другие медленнее. При этом приспособление идёт в ходе естественного отбора, т.е. за счёт гибели тех индивидов, которые не смогли адаптироваться к новым условиям.

Таким образом, биосфера представляет собой сложную динамическую систему, осуществляющую улавливание, накопление и перенос энергии путём обмена веществ между живым веществом и окружающей средой.

Свойства живого вещества.

Живое вещество, понятие.

Лекция 3. ЖИВОЕ ВЕЩЕСТВО ПЛАНЕТЫ.

Учение В.И.Вернадского гласит, что живое вещество (совокупность живых организмов) определяет и подчиняет себе всецело другие планетарные процессы. Если его равномерно распределить на поверхности Земли, то живые организмы образуют пленку толщиной 5 мм. Но, тем не менее, их роль велика. Значительное место занимает зеленое живое вещество растений, т.к. оно автотрофно и способно аккумулировать энергию Солнца и преобразовывать ее в энергию химических связей органических соединений.

Живые организмы превращают космическую лучистую энергию в земную химическую и создают бесконечное разнообразие нашего мира. Своим дыханием, питанием, метаболизмом, смертью и разложением, длящимися уже сотни миллионов лет, они порождают грандиозный планетарный процесс – миграцию химических элементов, или их круговорот.

Живое вещество, согласно теории Вернадского – биогеохимический фактор планетарного масштаба, под воздействием которого преобразуется как окружающая абиотическая сфера, так и сами живые организмы. Толщи известняков, угольные месторождения, железные руды – все это проявление деятельности силы жизни.

Живое вещество, несмотря на огромное разнообразие, едино в своей атомной основе. Атомная миграция идет не только между самими организмами, но и из организма в окружающую среду и обратно. Этого бы не было, если бы химический состав организмов не был близок к химическому составу земной коры. А химический состав последнего определяется не только геологическими причинами, но и закономерностями космического характера (например, строение атомов). Поэтому по Вернадскому жизнь – это космический процесс. В организмах преобладают легкие элементы из таблицы Менделеева: H, C, N, O, Na, Mg, P, S, К, Ca и др.

Термин «живое вещество» введен в литературу В. И. Вер­надским. Под ним он понимал совокупность всех живых организ­мов, выраженную через массу, энергию и химический состав.

По Вернадскому, живое вещество состоит из семи разнообразных, но геологически взаимосвязанных частей: живое вещество; биогенное вещество; косное вещество; биокосное вещество; радиоактивное вещество; рассеянные атомы; вещество космического происхождения. В пределах биосферы везде встречается либо живое вещество, либо следы его биогеохимической деятельности. Газы атмосферы (кислород, азот, углекислота), природные воды, равно как и каустобиолиты (нефти, угли), известняки, глины и их метаморфические производные (сланцы, мраморы, граниты и др.) в своей основе созданы живым веществом планеты. Слои земной коры, лишённые в настоящее время живого вещества, но переработанные им в геологическом прошлом, Вернадский относил к области «былых биосфер». Биосфера мозаична по структуре и составу, отражая геохимическую и геофизическую неоднородность лика Земли (океаны, озёра, горы, ущелья, равнины и т.д.) и неравномерность в распределении живого вещества по планете как в прошлые эпохи, так и в наше время. Максимальное содержание живого вещества гидросферы приурочено к мелководьям, минимальное - к глубинным акваториям (абиссаль); на суше эта неравномерность проявляется в мозаике биогеоценотического покрова (леса, болота, степи, пустыни и др.) с минимумом плотности живого вещества в высокогорьях, пустынях и полярных областях.



Вещества неживой природы относятся к косным (например, ми­нералы). В природе, кроме этого, довольно широко представлены био­косные вещества, образование и сложение которых обусловливает­ся живыми и косными составляющими (например, почвы, воды).

Живое вещество – основа биосферы, хотя и составляет крайне незначительную ее часть. Если его выделить в чистом виде и рас­пределить равномерно по поверхности Земли, то это будет слой около 2 см или крайне незначительная доля от объема всей био­сферы, толща которой измеряется десятками километров. В чем же причина столь высокой химической активности и геологической роли живого вещества?

Прежде всего, это связано с тем, что живые организмы, благо­даря биологическим катализаторам (ферментам), совершают, по выражению академика Л. С. Берга, с физико-химической точки зре­ния что-то невероятное. Например, они способны фиксировать в своем теле молекулярный азот атмосферы при обычных для при­родной среды значениях температуры и давления. В промышлен­ных условиях связывание атмосферного азота до аммиака требует температуры порядка 500°С и давления 300-500 атмосфер.

В живых организмах на порядок или несколько порядков увели­чиваются скорости химических реакций в процессе обмена веществ. В. И. Вернадский в связи с этим живое вещество назвал чрезвы­чайно активизированной материей.



Похожие статьи
 
Категории