Ako vyriešiť násobenie zlomkov s rôznymi menovateľmi. Zlomok

14.10.2019

Obyčajné zlomkové čísla sa prvýkrát stretávajú so školákmi v 5. ročníku a sprevádzajú ich po celý život, pretože v každodennom živote je často potrebné považovať alebo použiť predmet nie ako celok, ale v samostatných častiach. Začnite študovať túto tému - zdieľania. Akcie sú rovnaké diely, na ktoré sa delí ten či onen objekt. Nie vždy je totiž možné napríklad dĺžku alebo cenu výrobku vyjadriť ako celé číslo, treba brať do úvahy časti alebo zlomky nejakej miery. Samotné slovo „zlomok“, ktoré vzniklo zo slovesa „rozdeliť“ - rozdeliť na časti a má arabské korene, vzniklo v ruskom jazyku v 8. storočí.

Zlomkové výrazy boli dlho považované za najťažšie odvetvie matematiky. V 17. storočí, keď sa objavili prvé učebnice matematiky, sa nazývali „lomené čísla“, čo bolo pre ľudí veľmi ťažké pochopiť.

Modernú formu jednoduchých zlomkových zvyškov, ktorých časti sú oddelené vodorovnou čiarou, prvýkrát presadil Fibonacci – Leonardo z Pisy. Jeho diela sú datované do roku 1202. Ale cieľom tohto článku je jednoducho a jasne vysvetliť čitateľovi, ako sa násobia zmiešané zlomky s rôznymi menovateľmi.

Násobenie zlomkov s rôznymi menovateľmi

Spočiatku to stojí za to určiť typy zlomkov:

  • správne;
  • nesprávne;
  • zmiešané.

Ďalej si musíte pamätať, ako sa násobia zlomkové čísla s rovnakými menovateľmi. Samotné pravidlo tohto procesu nie je ťažké formulovať nezávisle: výsledkom násobenia jednoduchých zlomkov s rovnakými menovateľmi je zlomkový výraz, ktorého čitateľ je súčinom čitateľov a menovateľ je súčinom menovateľov týchto zlomkov. . To znamená, že v skutočnosti je novým menovateľom druhá mocnina jedného z pôvodne existujúcich.

Pri násobení jednoduché zlomky s rôznymi menovateľmi pre dva alebo viac faktorov sa pravidlo nemení:

a/b * c/d = a*c / b*d.

Jediný rozdiel je v tom, že vytvorené číslo pod zlomkovou čiarou bude súčinom rôznych čísel a prirodzene ho nemožno nazvať druhou mocninou jedného číselného výrazu.

Stojí za to zvážiť násobenie zlomkov s rôznymi menovateľmi pomocou príkladov:

  • 8/ 9 * 6/ 7 = 8*6 / 9*7 = 48/ 63 = 16/2 1 ;
  • 4/ 6 * 3/ 7 = 2/ 3 * 3/7 <> 2*3 / 3*7 = 6/ 21 .

Príklady používajú metódy na redukciu zlomkových výrazov. Čísla čitateľa môžete zmenšiť iba číslami menovateľa; susediace faktory nad alebo pod zlomkovou čiarou sa nedajú zmenšiť.

Spolu s jednoduchými zlomkami existuje aj koncept zmiešaných zlomkov. Zmiešané číslo pozostáva z celého čísla a zlomkovej časti, to znamená, že je to súčet týchto čísel:

1 4/ 11 =1 + 4/ 11.

Ako funguje násobenie?

Na zváženie je uvedených niekoľko príkladov.

2 1/ 2 * 7 3/ 5 = 2 + 1/ 2 * 7 + 3/ 5 = 2*7 + 2* 3/ 5 + 1/ 2 * 7 + 1/ 2 * 3/ 5 = 14 + 6/5 + 7/ 2 + 3/ 10 = 14 + 12/ 10 + 35/ 10 + 3/ 10 = 14 + 50/ 10 = 14 + 5=19.

Príklad používa násobenie čísla číslom obyčajná zlomková časť, pravidlo pre túto akciu môže byť napísané takto:

a* b/c = a*b /c.

V skutočnosti je takýto súčin súčtom rovnakých zlomkových zvyškov a počet členov označuje toto prirodzené číslo. Špeciálny prípad:

4 * 12/ 15 = 12/ 15 + 12/ 15 + 12/ 15 + 12/ 15 = 48/ 15 = 3 1/ 5.

Existuje aj iné riešenie, ako vynásobiť číslo zlomkovým zvyškom. Stačí vydeliť menovateľa týmto číslom:

d* e/f = e/f: d.

Táto technika je užitočná, keď je menovateľ delený prirodzeným číslom bez zvyšku alebo, ako sa hovorí, celým číslom.

Preveďte zmiešané čísla na nesprávne zlomky a získajte produkt vyššie opísaným spôsobom:

1 2/ 3 * 4 1/ 5 = 5/ 3 * 21/ 5 = 5*21 / 3*5 =7.

Tento príklad zahŕňa spôsob reprezentácie zmiešanej frakcie ako nesprávnej frakcie a môže byť reprezentovaný aj ako všeobecný vzorec:

a bc = a*b+ c / c, kde menovateľ nového zlomku vznikne vynásobením celej časti menovateľom a pripočítaním k čitateľovi pôvodného zlomkového zvyšku a menovateľ zostáva rovnaký.

Tento proces funguje aj v opačnom smere. Ak chcete oddeliť celú časť a zlomkový zvyšok, musíte rozdeliť čitateľa nesprávneho zlomku jeho menovateľom pomocou „rohu“.

Násobenie nesprávnych zlomkov vyrobené všeobecne akceptovaným spôsobom. Pri písaní pod jednou zlomkovou čiarou musíte zlomky podľa potreby zmenšiť, aby ste pomocou tejto metódy znížili čísla a uľahčili výpočet výsledku.

Na internete je množstvo pomocníkov na riešenie aj zložitých matematických úloh v rôznych variáciách programov. Dostatočný počet takýchto služieb ponúka svoju pomoc pri výpočte násobenia zlomkov s rôznymi číslami v menovateľoch - takzvané online kalkulačky na výpočet zlomkov. Sú schopní nielen násobiť, ale aj vykonávať všetky ostatné jednoduché aritmetické operácie s obyčajnými zlomkami a zmiešanými číslami. Práca s ním nie je náročná, vyplníte príslušné polia na webovej stránke, vyberiete znamienko matematickej operácie a kliknete na „vypočítať“. Program počíta automaticky.

Téma aritmetických operácií so zlomkami je aktuálna počas celého vzdelávania žiakov stredných a vysokých škôl. Na strednej škole už nepovažujú za najjednoduchší druh, ale celočíselné zlomkové výrazy, ale skôr získané znalosti pravidiel pre transformáciu a výpočty sa uplatňujú v pôvodnej podobe. Dobre zvládnuté základné znalosti dávajú úplnú istotu v úspešnom riešení najzložitejších problémov.

Na záver má zmysel citovať slová Leva Nikolajeviča Tolstého, ktorý napísal: „Človek je zlomok. Nie je v silách človeka zväčšiť svojho čitateľa – svoje zásluhy – ale každý môže znížiť svojho menovateľa – svoju mienku o sebe a týmto poklesom sa priblížiť k svojej dokonalosti.

Obsah lekcie

Sčítanie zlomkov s podobnými menovateľmi

Existujú dva typy pridávania frakcií:

  1. Sčítanie zlomkov s podobnými menovateľmi
  2. Sčítanie zlomkov s rôznymi menovateľmi

Najprv sa naučme sčítanie zlomkov s podobnými menovateľmi. Všetko je tu jednoduché. Ak chcete pridať zlomky s rovnakými menovateľmi, musíte pridať ich čitateľov a ponechať menovateľa nezmenený. Sčítajme napríklad zlomky a . Pridajte čitateľov a ponechajte menovateľa nezmenený:

Tento príklad možno ľahko pochopiť, ak si spomenieme na pizzu, ktorá je rozdelená na štyri časti. Ak k pizzi pridáte pizzu, získate pizzu:

Príklad 2 Pridajte zlomky a .

Odpoveď sa ukázala ako nesprávny zlomok. Keď príde koniec úlohy, je zvykom zbaviť sa nesprávnych zlomkov. Aby ste sa zbavili nevhodnej frakcie, musíte vybrať celú jej časť. V našom prípade je celá časť ľahko izolovaná - dve delené dvoma sa rovnajú jednej:

Tento príklad možno ľahko pochopiť, ak si spomenieme na pizzu, ktorá je rozdelená na dve časti. Ak k pizzi pridáte viac pizze, získate jednu celú pizzu:

Príklad 3. Pridajte zlomky a .

Opäť spočítame čitateľov a menovateľa necháme nezmenený:

Tento príklad možno ľahko pochopiť, ak si spomenieme na pizzu, ktorá je rozdelená na tri časti. Ak k pizzi pridáte viac pizze, získate pizzu:

Príklad 4. Nájdite hodnotu výrazu

Tento príklad je riešený presne rovnakým spôsobom ako predchádzajúce. Čitatelia sa musia pridať a menovateľ ponechať nezmenený:

Pokúsme sa znázorniť naše riešenie pomocou kresby. Ak pridáte pizzu na pizzu a pridáte viac pizze, získate 1 celú pizzu a viac pizze.

Ako vidíte, na sčítaní zlomkov s rovnakými menovateľmi nie je nič zložité. Stačí pochopiť nasledujúce pravidlá:

  1. Ak chcete pridať zlomky s rovnakým menovateľom, musíte pridať ich čitateľov a ponechať menovateľa nezmenený;

Sčítanie zlomkov s rôznymi menovateľmi

Teraz sa naučíme, ako sčítať zlomky s rôznymi menovateľmi. Pri sčítavaní zlomkov musia byť menovatelia zlomkov rovnaké. Ale nie sú vždy rovnaké.

Napríklad zlomky možno sčítať, pretože majú rovnakých menovateľov.

Zlomky však nemožno sčítať hneď, pretože tieto zlomky majú rôznych menovateľov. V takýchto prípadoch sa zlomky musia zredukovať na rovnaký (spoločný) menovateľ.

Existuje niekoľko spôsobov, ako znížiť zlomky na rovnakého menovateľa. Dnes sa pozrieme len na jeden z nich, keďže ostatné spôsoby sa môžu začiatočníkovi zdať komplikované.

Podstatou tejto metódy je, že najprv sa hľadá LCM menovateľov oboch zlomkov. LCM sa potom vydelí menovateľom prvej frakcie, čím sa získa prvý dodatočný faktor. To isté urobia s druhou frakciou - LCM sa vydelí menovateľom druhej frakcie a získa sa druhý dodatočný faktor.

Čitatelia a menovatelia zlomkov sa potom vynásobia ich dodatočnými faktormi. V dôsledku týchto akcií sa zlomky, ktoré mali rôznych menovateľov, zmenia na zlomky, ktoré majú rovnakých menovateľov. A takéto zlomky už vieme sčítať.

Príklad 1. Pridajme zlomky a

V prvom rade nájdeme najmenší spoločný násobok menovateľov oboch zlomkov. Menovateľom prvého zlomku je číslo 3 a menovateľom druhého zlomku je číslo 2. Najmenší spoločný násobok týchto čísel je 6

LCM (2 a 3) = 6

Teraz sa vráťme k zlomkom a . Najprv vydeľte LCM menovateľom prvého zlomku a získajte prvý dodatočný faktor. LCM je číslo 6 a menovateľom prvého zlomku je číslo 3. Ak vydelíme 6 3, dostaneme 2.

Výsledné číslo 2 je prvým dodatočným násobiteľom. Zapisujeme to na prvý zlomok. Za týmto účelom urobte malú šikmú čiaru nad zlomkom a zapíšte ďalší faktor, ktorý sa nachádza nad ním:

To isté robíme s druhým zlomkom. LCM vydelíme menovateľom druhého zlomku a dostaneme druhý dodatočný faktor. LCM je číslo 6 a menovateľom druhého zlomku je číslo 2. Ak vydelíme 6 2, dostaneme 3.

Výsledné číslo 3 je druhým dodatočným multiplikátorom. Zapisujeme to na druhý zlomok. Opäť urobíme malú šikmú čiaru cez druhý zlomok a zapíšeme ďalší faktor, ktorý sa nachádza nad ním:

Teraz máme všetko pripravené na doplnenie. Zostáva vynásobiť čitateľov a menovateľov zlomkov ich dodatočnými faktormi:

Pozrite sa pozorne, k čomu sme dospeli. Dospeli sme k záveru, že zlomky, ktoré mali rôznych menovateľov, sa zmenili na zlomky, ktoré mali rovnakých menovateľov. A takéto zlomky už vieme sčítať. Vezmime si tento príklad do konca:

Týmto je príklad dokončený. Ukazuje sa pridať .

Pokúsme sa znázorniť naše riešenie pomocou kresby. Ak k pizzi pridáte pizzu, získate jednu celú pizzu a ďalšiu šestinu pizze:

Redukovanie zlomkov na rovnaký (spoločný) menovateľ možno znázorniť aj pomocou obrázka. Redukovaním zlomkov a na spoločného menovateľa sme dostali zlomky a . Tieto dve frakcie budú reprezentované rovnakými kúskami pizze. Jediný rozdiel bude v tom, že tentoraz budú rozdelené na rovnaké podiely (redukované na rovnakého menovateľa).

Prvý výkres predstavuje zlomok (štyri kusy zo šiestich) a druhý výkres predstavuje zlomok (tri kusy zo šiestich). Pridaním týchto kusov dostaneme (sedem kusov zo šiestich). Tento zlomok je nesprávny, preto sme zvýraznili jeho celú časť. V dôsledku toho sme dostali (jedna celá pizza a ďalšia šiesta pizza).

Upozorňujeme, že tento príklad sme opísali príliš podrobne. Vo vzdelávacích inštitúciách nie je zvykom písať tak podrobne. Musíte byť schopní rýchlo nájsť LCM oboch menovateľov a ďalších faktorov k nim, ako aj rýchlo vynásobiť nájdené dodatočné faktory vašimi čitateľmi a menovateľmi. Keby sme boli v škole, museli by sme tento príklad napísať takto:

Ale je tu aj druhá strana mince. Ak si v prvých fázach štúdia matematiky nerobíte podrobné poznámky, začnú sa objavovať otázky tohto druhu. "Odkiaľ pochádza to číslo?", "Prečo sa zlomky zrazu zmenia na úplne iné zlomky? «.

Na uľahčenie pridávania zlomkov s rôznymi menovateľmi môžete použiť nasledujúce podrobné pokyny:

  1. Nájdite LCM menovateľov zlomkov;
  2. Vydeľte LCM menovateľom každého zlomku a získajte dodatočný faktor pre každý zlomok;
  3. Vynásobte čitateľov a menovateľov zlomkov ich ďalšími faktormi;
  4. Pridajte zlomky, ktoré majú rovnakých menovateľov;
  5. Ak sa ukáže, že odpoveď je nesprávny zlomok, vyberte celú jeho časť;

Príklad 2 Nájdite hodnotu výrazu .

Využime pokyny uvedené vyššie.

Krok 1. Nájdite LCM menovateľov zlomkov

Nájdite LCM menovateľov oboch zlomkov. Menovateľmi zlomkov sú čísla 2, 3 a 4

Krok 2. Vydeľte LCM menovateľom každého zlomku a získajte ďalší faktor pre každý zlomok

Vydeľte LCM menovateľom prvého zlomku. LCM je číslo 12 a menovateľom prvého zlomku je číslo 2. Vydelíme 12 2, dostaneme 6. Získame prvý dodatočný faktor 6. Napíšeme ho nad prvý zlomok:

Teraz delíme LCM menovateľom druhého zlomku. LCM je číslo 12 a menovateľom druhého zlomku je číslo 3. Vydelíme 12 3, dostaneme 4. Dostaneme druhý dodatočný faktor 4. Napíšeme ho nad druhý zlomok:

Teraz delíme LCM menovateľom tretieho zlomku. LCM je číslo 12 a menovateľom tretieho zlomku je číslo 4. Vydelíme 12 4, dostaneme 3. Dostaneme tretí dodatočný faktor 3. Napíšeme ho nad tretí zlomok:

Krok 3. Vynásobte čitateľov a menovateľov zlomkov ich ďalšími faktormi

Čitateľov a menovateľov vynásobíme ich ďalšími faktormi:

Krok 4. Pridajte zlomky s rovnakými menovateľmi

Dospeli sme k záveru, že zlomky, ktoré mali rôznych menovateľov, sa zmenili na zlomky, ktoré mali rovnakých (spoločných) menovateľov. Zostáva len sčítať tieto zlomky. Pridajte to:

Doplnenie sa nezmestilo na jeden riadok, preto sme zvyšný výraz presunuli na ďalší riadok. V matematike je to dovolené. Keď sa výraz nezmestí na jeden riadok, presunie sa na ďalší riadok a na koniec prvého riadku a na začiatok nového riadku je potrebné vložiť znamienko rovnosti (=). Znamienko rovnosti v druhom riadku znamená, že ide o pokračovanie výrazu, ktorý bol v prvom riadku.

Krok 5. Ak sa ukáže, že odpoveď je nesprávny zlomok, vyberte celú jeho časť

Naša odpoveď sa ukázala ako nesprávny zlomok. Musíme vyzdvihnúť celú jeho časť. Zdôrazňujeme:

Dostali sme odpoveď

Odčítanie zlomkov s rovnakými menovateľmi

Existujú dva typy odčítania zlomkov:

  1. Odčítanie zlomkov s rovnakými menovateľmi
  2. Odčítanie zlomkov s rôznymi menovateľmi

Najprv sa naučme, ako odčítať zlomky s podobnými menovateľmi. Všetko je tu jednoduché. Ak chcete odčítať ďalší od jedného zlomku, musíte odčítať čitateľa druhého zlomku od čitateľa prvého zlomku, no menovateľ ponechajte rovnaký.

Napríklad nájdime hodnotu výrazu . Na vyriešenie tohto príkladu musíte odčítať čitateľa druhého zlomku od čitateľa prvého zlomku a ponechať menovateľa nezmenený. Poďme to spraviť:

Tento príklad možno ľahko pochopiť, ak si spomenieme na pizzu, ktorá je rozdelená na štyri časti. Ak z pizze nakrájate pizzu, získate pizzu:

Príklad 2 Nájdite hodnotu výrazu.

Opäť, od čitateľa prvého zlomku, odčítajte čitateľa druhého zlomku a menovateľ ponechajte nezmenený:

Tento príklad možno ľahko pochopiť, ak si spomenieme na pizzu, ktorá je rozdelená na tri časti. Ak z pizze nakrájate pizzu, získate pizzu:

Príklad 3 Nájdite hodnotu výrazu

Tento príklad je riešený presne rovnakým spôsobom ako predchádzajúce. Od čitateľa prvého zlomku musíte odpočítať čitateľa zostávajúcich zlomkov:

Ako vidíte, na odčítaní zlomkov s rovnakými menovateľmi nie je nič zložité. Stačí pochopiť nasledujúce pravidlá:

  1. Ak chcete odčítať ďalší od jedného zlomku, musíte odčítať čitateľa druhého zlomku od čitateľa prvého zlomku a menovateľa ponechať nezmenený;
  2. Ak sa ukáže, že odpoveď je nesprávny zlomok, musíte zvýrazniť celú jeho časť.

Odčítanie zlomkov s rôznymi menovateľmi

Môžete napríklad odčítať zlomok od zlomku, pretože zlomky majú rovnakých menovateľov. Nemôžete však odčítať zlomok od zlomku, pretože tieto zlomky majú rôznych menovateľov. V takýchto prípadoch sa zlomky musia zredukovať na rovnaký (spoločný) menovateľ.

Spoločný menovateľ sa nachádza pomocou rovnakého princípu, ktorý sme použili pri sčítaní zlomkov s rôznymi menovateľmi. Najprv nájdite LCM menovateľov oboch zlomkov. Potom sa LCM vydelí menovateľom prvého zlomku a získa sa prvý dodatočný faktor, ktorý je napísaný nad prvým zlomkom. Podobne sa LCM vydelí menovateľom druhého zlomku a získa sa druhý dodatočný faktor, ktorý je napísaný nad druhým zlomkom.

Zlomky sa potom vynásobia ich dodatočnými faktormi. V dôsledku týchto operácií sa zlomky, ktoré mali rôznych menovateľov, premenia na zlomky, ktoré majú rovnakých menovateľov. A už vieme, ako takéto zlomky odčítať.

Príklad 1 Nájdite význam výrazu:

Tieto zlomky majú rôznych menovateľov, preto ich musíte zredukovať na rovnakého (spoločného) menovateľa.

Najprv nájdeme LCM menovateľov oboch zlomkov. Menovateľom prvého zlomku je číslo 3 a menovateľom druhého zlomku je číslo 4. Najmenší spoločný násobok týchto čísel je 12

LCM (3 a 4) = 12

Teraz sa vráťme k zlomkom a

Nájdite ďalší faktor pre prvý zlomok. Za týmto účelom vydeľte LCM menovateľom prvého zlomku. LCM je číslo 12 a menovateľom prvého zlomku je číslo 3. Vydelíme 12 3, dostaneme 4. Napíšte štvorku nad prvý zlomok:

To isté robíme s druhým zlomkom. Vydeľte LCM menovateľom druhého zlomku. LCM je číslo 12 a menovateľom druhého zlomku je číslo 4. Vydelíme 12 4, dostaneme 3. Napíšte trojku nad druhý zlomok:

Teraz sme pripravení na odčítanie. Zostáva vynásobiť zlomky ich ďalšími faktormi:

Dospeli sme k záveru, že zlomky, ktoré mali rôznych menovateľov, sa zmenili na zlomky, ktoré mali rovnakých menovateľov. A už vieme, ako takéto zlomky odčítať. Vezmime si tento príklad do konca:

Dostali sme odpoveď

Pokúsme sa znázorniť naše riešenie pomocou kresby. Ak odkrojíte pizzu z pizze, dostanete pizzu

Toto je podrobná verzia riešenia. Keby sme boli v škole, museli by sme tento príklad riešiť kratšie. Takéto riešenie by vyzeralo takto:

Redukciu zlomkov na spoločného menovateľa možno znázorniť aj pomocou obrázka. Redukovaním týchto zlomkov na spoločného menovateľa sme dostali zlomky a . Tieto zlomky budú reprezentované rovnakými plátkami pizze, ale tentoraz budú rozdelené na rovnaké časti (redukované na rovnakého menovateľa):

Na prvom obrázku je zlomok (osem dielikov z dvanástich) a na druhom obrázku je zlomok (tri dieliky z dvanástich). Vyrezaním troch kusov z ôsmich kusov dostaneme päť kusov z dvanástich. Zlomok popisuje týchto päť kusov.

Príklad 2 Nájdite hodnotu výrazu

Tieto zlomky majú rôznych menovateľov, preto ich najprv musíte zredukovať na rovnakého (spoločného) menovateľa.

Nájdite LCM menovateľov týchto zlomkov.

Menovateľmi zlomkov sú čísla 10, 3 a 5. Najmenší spoločný násobok týchto čísel je 30

LCM(10,3,5) = 30

Teraz nájdeme ďalšie faktory pre každý zlomok. Ak to chcete urobiť, vydeľte LCM menovateľom každého zlomku.

Nájdite ďalší faktor pre prvý zlomok. LCM je číslo 30 a menovateľom prvého zlomku je číslo 10. Vydelením 30 10 dostaneme prvý dodatočný faktor 3. Napíšeme ho nad prvý zlomok:

Teraz nájdeme ďalší faktor pre druhý zlomok. Vydeľte LCM menovateľom druhého zlomku. LCM je číslo 30 a menovateľom druhého zlomku je číslo 3. Vydelením 30 3 dostaneme druhý dodatočný faktor 10. Napíšeme ho nad druhý zlomok:

Teraz nájdeme ďalší faktor pre tretí zlomok. Vydeľte LCM menovateľom tretieho zlomku. LCM je číslo 30 a menovateľom tretieho zlomku je číslo 5. Ak vydelíme 30 číslom 5, dostaneme tretí dodatočný faktor 6. Napíšeme ho nad tretí zlomok:

Teraz je všetko pripravené na odčítanie. Zostáva vynásobiť zlomky ich ďalšími faktormi:

Dospeli sme k záveru, že zlomky, ktoré mali rôznych menovateľov, sa zmenili na zlomky, ktoré mali rovnakých (spoločných) menovateľov. A už vieme, ako takéto zlomky odčítať. Dokončime tento príklad.

Pokračovanie príkladu sa nezmestí na jeden riadok, preto posunieme pokračovanie na ďalší riadok. Nezabudnite na znamienko rovnosti (=) v novom riadku:

Odpoveď sa ukázala ako obyčajný zlomok a zdá sa, že všetko nám vyhovuje, ale je príliš ťažkopádne a škaredé. Mali by sme to zjednodušiť. Čo sa dá robiť? Tento zlomok môžete skrátiť.

Ak chcete zlomok zmenšiť, musíte vydeliť jeho čitateľa a menovateľa (GCD) čísel 20 a 30.

Nájdeme teda gcd čísel 20 a 30:

Teraz sa vrátime k nášmu príkladu a vydelíme čitateľa a menovateľa zlomku nájdeným gcd, to znamená 10

Dostali sme odpoveď

Násobenie zlomku číslom

Ak chcete vynásobiť zlomok číslom, musíte vynásobiť čitateľa daného zlomku týmto číslom a ponechať menovateľa rovnakého.

Príklad 1. Vynásobte zlomok číslom 1.

Vynásobte čitateľa zlomku číslom 1

Nahrávku možno chápať tak, že zaberie polovičný 1 čas. Napríklad, ak si dáte pizzu raz, dostanete pizzu

Zo zákonov násobenia vieme, že ak dôjde k zámene multiplikandu a faktora, súčin sa nezmení. Ak je výraz napísaný ako , potom sa súčin bude stále rovnať . Opäť platí pravidlo pre násobenie celého čísla a zlomku:

Tento zápis možno chápať ako prevzatie polovice jednotky. Napríklad, ak je 1 celá pizza a vezmeme si polovicu z nej, potom budeme mať pizzu:

Príklad 2. Nájdite hodnotu výrazu

Vynásobte čitateľa zlomku číslom 4

Odpoveď bol nesprávny zlomok. Vyzdvihnime celú jeho časť:

Výraz možno chápať ako brať dve štvrtiny 4 krát. Napríklad, ak si vezmete 4 pizze, dostanete dve celé pizze

A ak zameníme multiplikand a multiplikátor, dostaneme výraz . Bude sa rovnať aj 2. Tento výraz možno chápať ako odoberanie dvoch pizze zo štyroch celých pízz:

Násobenie zlomkov

Ak chcete vynásobiť zlomky, musíte vynásobiť ich čitateľov a menovateľov. Ak sa ukáže, že odpoveď je nesprávny zlomok, musíte zvýrazniť celú jeho časť.

Príklad 1 Nájdite hodnotu výrazu.

Dostali sme odpoveď. Je vhodné tento podiel znížiť. Zlomok môže byť znížený o 2. Potom bude mať konečné riešenie nasledujúcu formu:

Výraz možno chápať tak, že si vezmete pizzu z polovice pizze. Povedzme, že máme polovicu pizze:

Ako ubrať dve tretiny z tejto polovice? Najprv musíte rozdeliť túto polovicu na tri rovnaké časti:

A vezmite si dva z týchto troch kusov:

Urobíme pizzu. Pamätajte si, ako pizza vyzerá, keď je rozdelená na tri časti:

Jeden kus tejto pizze a dva kusy, ktoré sme si vzali, budú mať rovnaké rozmery:

Inými slovami, hovoríme o rovnakej veľkosti pizze. Preto hodnota výrazu je

Príklad 2. Nájdite hodnotu výrazu

Vynásobte čitateľa prvého zlomku čitateľom druhého zlomku a menovateľa prvého zlomku menovateľom druhého zlomku:

Odpoveď bol nesprávny zlomok. Vyzdvihnime celú jeho časť:

Príklad 3 Nájdite hodnotu výrazu

Vynásobte čitateľa prvého zlomku čitateľom druhého zlomku a menovateľa prvého zlomku menovateľom druhého zlomku:

Odpoveď sa ukázala ako obyčajný zlomok, ale bolo by dobré, keby sa skrátil. Ak chcete tento zlomok zmenšiť, musíte vydeliť čitateľa a menovateľa tohto zlomku najväčším spoločným deliteľom (GCD) čísel 105 a 450.

Takže nájdime gcd čísel 105 a 450:

Teraz vydelíme čitateľa a menovateľa našej odpovede hodnotou gcd, ktorú sme teraz našli, teda 15

Predstavuje celé číslo ako zlomok

Akékoľvek celé číslo môže byť vyjadrené ako zlomok. Napríklad číslo 5 môže byť reprezentované ako . To nezmení význam päť, pretože výraz znamená „číslo päť delené jedným“ a toto, ako vieme, sa rovná piatim:

Recipročné čísla

Teraz sa zoznámime s veľmi zaujímavou témou z matematiky. Hovorí sa tomu „obrátené čísla“.

Definícia. Obráťte sa na čísloa je číslo, ktoré po vynásobenía dáva jeden.

Namiesto premennej dosadíme v tejto definícii ačíslo 5 a skúste si prečítať definíciu:

Obráťte sa na číslo 5 je číslo, ktoré po vynásobení 5 dáva jeden.

Je možné nájsť číslo, ktoré po vynásobení 5 dáva jednotku? Ukazuje sa, že je to možné. Predstavme si päťku ako zlomok:

Potom tento zlomok vynásobte sám, stačí vymeniť čitateľa a menovateľa. Inými slovami, vynásobme zlomok sám o sebe, iba hore nohami:

Čo sa stane v dôsledku toho? Ak budeme pokračovať v riešení tohto príkladu, dostaneme jeden:

To znamená, že inverzná hodnota k číslu 5 je číslo , pretože keď vynásobíte 5 číslom, dostanete jednotku.

Prevrátenú hodnotu čísla možno nájsť aj pre akékoľvek iné celé číslo.

Môžete tiež nájsť prevrátenú hodnotu akéhokoľvek iného zlomku. Ak to chcete urobiť, jednoducho ho otočte.

Delenie zlomku číslom

Povedzme, že máme polovicu pizze:

Rozdeľme to rovným dielom medzi dvoch. Koľko pizze dostane každý?

Je vidieť, že po rozdelení polovice pizze sa získali dva rovnaké kusy, z ktorých každý tvorí pizzu. Takže každý dostane pizzu.

Delenie zlomkov sa robí pomocou reciprokých. Recipročné čísla umožňujú nahradiť delenie násobením.

Ak chcete zlomok vydeliť číslom, musíte zlomok vynásobiť inverznou hodnotou k deliteľovi.

Pomocou tohto pravidla si zapíšeme rozdelenie našej polovice pizze na dve časti.

Preto musíte zlomok vydeliť číslom 2. Tu je dividenda zlomkom a deliteľom je číslo 2.

Ak chcete rozdeliť zlomok číslom 2, musíte tento zlomok vynásobiť prevrátenou hodnotou deliteľa 2. Prevrátená hodnota deliteľa 2 je zlomok. Takže musíte násobiť

Aby ste správne vynásobili zlomok zlomkom alebo zlomok číslom, musíte poznať jednoduché pravidlá. Teraz tieto pravidlá podrobne rozoberieme.

Násobenie bežného zlomku zlomkom.

Ak chcete vynásobiť zlomok zlomkom, musíte vypočítať súčin čitateľov a súčin menovateľov týchto zlomkov.

\(\bf \frac(a)(b) \krát \frac(c)(d) = \frac(a \krát c)(b \krát d)\\\)

Pozrime sa na príklad:
Čitateľ prvého zlomku vynásobíme čitateľom druhého zlomku a menovateľ prvého zlomku vynásobíme aj menovateľom druhého zlomku.

\(\frac(6)(7) \times \frac(2)(3) = \frac(6 \times 2)(7 \times 3) = \frac(12)(21) = \frac(4 \ krát 3)(7 \krát 3) = \frac(4)(7)\\\)

Zlomok \(\frac(12)(21) = \frac(4 \krát 3)(7 \krát 3) = \frac(4)(7)\\\) sa znížil o 3.

Násobenie zlomku číslom.

Najprv si pripomeňme pravidlo, akékoľvek číslo môže byť vyjadrené ako zlomok \(\bf n = \frac(n)(1)\) .

Využime toto pravidlo pri násobení.

\(5 \times \frac(4)(7) = \frac(5)(1) \times \frac(4)(7) = \frac(5 \times 4)(1 \times 7) = \frac (20)(7) = 2\frac(6)(7)\\\)

Nesprávny zlomok \(\frac(20)(7) = \frac(14 + 6)(7) = \frac(14)(7) + \frac(6)(7) = 2 + \frac(6)( 7)= 2\frac(6)(7)\\\) prevedený na zmiešaný zlomok.

Inými slovami, Pri násobení čísla zlomkom číslo vynásobíme čitateľom a menovateľa necháme nezmenený. Príklad:

\(\frac(2)(5) \krát 3 = \frac(2 \krát 3)(5) = \frac(6)(5) = 1\frac(1)(5)\\\\\) \(\bf \frac(a)(b) \krát c = \frac(a \krát c)(b)\\\)

Násobenie zmiešaných zlomkov.

Ak chcete násobiť zmiešané zlomky, musíte najprv každý zmiešaný zlomok reprezentovať ako nesprávny zlomok a potom použiť pravidlo násobenia. Čitateľa vynásobíme čitateľom a menovateľa vynásobíme menovateľom.

Príklad:
\(2\frac(1)(4) \times 3\frac(5)(6) = \frac(9)(4) \times \frac(23)(6) = \frac(9 \times 23) (4 \krát 6) = \frac(3 \krát \color(červená) (3) \krát 23)(4 \krát 2 \krát \farba(červená) (3)) = \frac(69)(8) = 8\frac(5)(8)\\\)

Násobenie vzájomných zlomkov a čísel.

Zlomok \(\bf \frac(a)(b)\) je inverzný k zlomku \(\bf \frac(b)(a)\ za predpokladu, že a≠0,b≠0.
Zlomky \(\bf \frac(a)(b)\) a \(\bf \frac(b)(a)\) sa nazývajú recipročné zlomky. Súčin recipročných zlomkov sa rovná 1.
\(\bf \frac(a)(b) \krát \frac(b)(a) = 1 \\\)

Príklad:
\(\frac(5)(9) \times \frac(9)(5) = \frac(45)(45) = 1\\\)

Súvisiace otázky:
Ako vynásobiť zlomok zlomkom?
Odpoveď: Súčin obyčajných zlomkov je násobenie čitateľa s čitateľom, menovateľa s menovateľom. Ak chcete získať produkt zmiešaných frakcií, musíte ich previesť na nesprávny zlomok a vynásobiť podľa pravidiel.

Ako násobiť zlomky s rôznymi menovateľmi?
Odpoveď: nezáleží na tom, či majú zlomky rovnakých alebo rôznych menovateľov, násobenie nastáva podľa pravidla hľadania súčinu čitateľa s čitateľom, menovateľa s menovateľom.

Ako násobiť zmiešané zlomky?
Odpoveď: Najprv musíte previesť zmiešanú frakciu na nesprávnu frakciu a potom nájsť produkt pomocou pravidiel násobenia.

Ako vynásobiť číslo zlomkom?
Odpoveď: číslo vynásobíme čitateľom, no menovateľa necháme rovnaký.

Príklad č. 1:
Vypočítajte súčin: a) \(\frac(8)(9) \krát \frac(7)(11)\) b) \(\frac(2)(15) \krát \frac(10)(13) \ )

Riešenie:
a) \(\frac(8)(9) \times \frac(7)(11) = \frac(8 \times 7)(9 \times 11) = \frac(56)(99)\\\\ \)
b) \(\frac(2)(15) \krát \frac(10)(13) = \frac(2 \krát 10) (15 \krát 13) = \frac(2 \krát 2 \krát \color( červená) (5))(3 \krát \farba(červená) (5) \krát 13) = \frac(4)(39)\)

Príklad č. 2:
Vypočítajte súčin čísla a zlomku: a) \(3 \krát \frac(17)(23)\) b) \(\frac(2)(3) \krát 11\)

Riešenie:
a) \(3 \krát \frac(17)(23) = \frac(3)(1) \krát \frac(17)(23) = \frac(3 \krát 17)(1 \krát 23) = \frac(51)(23) = 2\frac(5)(23)\\\\\)
b) \(\frac(2)(3) \krát 11 = \frac(2)(3) \krát \frac(11)(1) = \frac(2 \krát 11)(3 \krát 1) = \frac(22)(3) = 7\frac(1)(3)\)

Príklad č. 3:
Napíšte prevrátenú hodnotu zlomku \(\frac(1)(3)\)?
Odpoveď: \(\frac(3)(1) = 3\)

Príklad č. 4:
Vypočítajte súčin dvoch vzájomne inverzných zlomkov: a) \(\frac(104)(215) \krát \frac(215)(104)\)

Riešenie:
a) \(\frac(104)(215) \krát \frac(215)(104) = 1\)

Príklad č. 5:
Môžu byť recipročné zlomky:
a) súčasne s vlastnými zlomkami;
b) súčasne nesprávne zlomky;
c) súčasne prirodzené čísla?

Riešenie:
a) aby sme odpovedali na prvú otázku, uveďme príklad. Zlomok \(\frac(2)(3)\) je vlastný, jeho inverzný zlomok sa bude rovnať \(\frac(3)(2)\) - nevlastný zlomok. odpoveď: nie.

b) takmer vo všetkých výpočtoch zlomkov táto podmienka nie je splnená, ale existujú čísla, ktoré podmienku, že sú súčasne nevlastným zlomkom, spĺňajú. Napríklad nesprávny zlomok je \(\frac(3)(3)\), jeho inverzný zlomok sa rovná \(\frac(3)(3)\). Dostaneme dva nesprávne zlomky. Odpoveď: nie vždy za určitých podmienok, keď sú čitateľ a menovateľ rovnaký.

c) prirodzené čísla sú čísla, ktoré používame pri počítaní napríklad 1, 2, 3, …. Ak vezmeme číslo \(3 = \frac(3)(1)\), tak jeho inverzný zlomok bude \(\frac(1)(3)\). Zlomok \(\frac(1)(3)\) nie je prirodzené číslo. Ak prejdeme cez všetky čísla, prevrátená hodnota čísla je vždy zlomok, okrem 1. Ak vezmeme číslo 1, potom jeho prevrátený zlomok bude \(\frac(1)(1) = \frac(1 )(1) = 1\). Číslo 1 je prirodzené číslo. Odpoveď: môžu byť súčasne prirodzenými číslami iba v jednom prípade, ak je to číslo 1.

Príklad č. 6:
Urobte súčin zmiešaných frakcií: a) \(4 \krát 2\frac(4)(5)\) b) \(1\frac(1)(4) \krát 3\frac(2)(7)\ )

Riešenie:
a) \(4 \krát 2\frac(4)(5) = \frac(4)(1) \krát \frac(14)(5) = \frac(56)(5) = 11\frac(1 )(5)\\\\ \)
b) \(1\frac(1)(4) \times 3\frac(2)(7) = \frac(5)(4) \times \frac(23)(7) = \frac(115)( 28) = 4\frac(3)(7)\)

Príklad č. 7:
Môžu byť dve prevrátené čísla súčasne zmiešané?

Pozrime sa na príklad. Zoberme si zmiešaný zlomok \(1\frac(1)(2)\), nájdime jeho inverzný zlomok, aby sme to urobili, prevedieme ho na nesprávny zlomok \(1\frac(1)(2) = \frac(3 )(2) \) . Jeho inverzný zlomok sa bude rovnať \(\frac(2)(3)\) . Zlomok \(\frac(2)(3)\) je vlastný zlomok. Odpoveď: Dva zlomky, ktoré sú vzájomne inverzné, nemôžu byť súčasne zmiešanými číslami.

Ďalšou operáciou, ktorú možno vykonať s obyčajnými zlomkami, je násobenie. Pokúsime sa vysvetliť jej základné pravidlá pri riešení úloh, ukážeme, ako sa obyčajný zlomok násobí prirodzeným číslom a ako správne vynásobiť tri a viac obyčajných zlomkov.

Najprv si napíšme základné pravidlo:

Definícia 1

Ak vynásobíme jeden obyčajný zlomok, tak čitateľ výsledného zlomku sa bude rovnať súčinu čitateľov pôvodných zlomkov a menovateľ sa bude rovnať súčinu ich menovateľov. V doslovnom tvare to možno pre dva zlomky a / b a c / d vyjadriť ako a b · c d = a · c b · d.

Pozrime sa na príklad, ako správne aplikovať toto pravidlo. Povedzme, že máme štvorec, ktorého strana sa rovná jednej číselnej jednotke. Potom bude plocha obrázku 1 štvorcový. jednotka. Ak štvorec rozdelíme na rovnaké obdĺžniky so stranami rovnými 1 4 a 1 8 číselným jednotkám, dostaneme, že teraz pozostáva z 32 obdĺžnikov (pretože 8 4 = 32). V súlade s tým sa plocha každého z nich bude rovnať 1 32 plochy celého obrázku, t.j. 1 32 m2 Jednotky.

Máme tieňovaný fragment so stranami rovnými 5 8 číselným jednotkám a 3 4 číselným jednotkám. Ak chcete vypočítať jeho plochu, musíte vynásobiť prvý zlomok druhým. Bude sa rovnať 5 8 · 3 4 štvorcovým. Jednotky. Ale môžeme jednoducho spočítať, koľko obdĺžnikov je zahrnutých vo fragmente: je ich 15, čo znamená, že celková plocha je 15 32 štvorcových jednotiek.

Pretože 5 3 = 15 a 8 4 = 32, môžeme napísať nasledujúcu rovnosť:

5 8 3 4 = 5 3 8 4 = 15 32

Potvrdzuje to pravidlo, ktoré sme sformulovali pre násobenie obyčajných zlomkov, ktoré je vyjadrené ako a b · c d = a · c b · d. Funguje to rovnako pre správne aj nesprávne zlomky; Môže sa použiť na násobenie zlomkov s rôznymi aj rovnakými menovateľmi.

Pozrime sa na riešenia niekoľkých problémov týkajúcich sa násobenia obyčajných zlomkov.

Príklad 1

Vynásobte 7 11 číslom 9 8.

Riešenie

Najprv vypočítajme súčin čitateľov uvedených zlomkov vynásobením 7 x 9. Máme 63. Potom vypočítame súčin menovateľov a dostaneme: 11 · 8 = 88. Zostavme dve čísla a odpoveď je: 63 88.

Celé riešenie možno napísať takto:

7 11 9 8 = 7 9 11 8 = 63 88

odpoveď: 7 11 · 9 8 = 63 88.

Ak v odpovedi dostaneme redukovateľný zlomok, musíme dokončiť výpočet a vykonať jeho redukciu. Ak dostaneme nesprávny zlomok, musíme z neho oddeliť celú časť.

Príklad 2

Vypočítajte súčin zlomkov 415 a 556.

Riešenie

Podľa vyššie uvedeného pravidla musíme vynásobiť čitateľa čitateľom a menovateľa menovateľom. Záznam riešenia bude vyzerať takto:

4 15 55 6 = 4 55 15 6 = 220 90

Dostali sme redukovateľný zlomok, t.j. ten, ktorý je deliteľný 10.

Zmenšime zlomok: 220 90 gcd (220, 90) = 10, 220 90 = 220: 10 90: 10 = 22 9. V dôsledku toho dostaneme nesprávny zlomok, z ktorého vyberieme celú časť a získame zmiešané číslo: 22 9 = 2 4 9.

odpoveď: 4 15 55 6 = 2 4 9.

Pre jednoduchosť výpočtu môžeme pred vykonaním operácie násobenia zmenšiť aj pôvodné zlomky, na ktoré potrebujeme zlomok zmenšiť do tvaru a · c b · d. Rozložme hodnoty premenných na jednoduché faktory a tie isté zredukujeme.

Vysvetlime si, ako to vyzerá pomocou údajov z konkrétnej úlohy.

Príklad 3

Vypočítajte súčin 4 15 55 6.

Riešenie

Zapíšme si výpočty na základe pravidla násobenia. Dostaneme:

4 15 55 6 = 4 55 15 6

Pretože 4 = 2 2, 55 = 5 11, 15 = 3 5 a 6 = 2 3, potom 4 55 15 6 = 2 2 5 11 3 5 2 3.

2 11 3 3 = 22 9 = 2 4 9

Odpoveď: 4 15 · 55 6 = 2 4 9 .

Číselný výraz, v ktorom sa obyčajné zlomky násobia, má komutatívnu vlastnosť, to znamená, že v prípade potreby môžeme zmeniť poradie faktorov:

a b · c d = c d · a b = a · c b · d

Ako vynásobiť zlomok prirodzeným číslom

Hneď si zapíšme základné pravidlo, a potom si ho skúsme vysvetliť v praxi.

Definícia 2

Ak chcete vynásobiť bežný zlomok prirodzeným číslom, musíte vynásobiť čitateľa tohto zlomku týmto číslom. V tomto prípade sa menovateľ konečného zlomku bude rovnať menovateľovi pôvodného obyčajného zlomku. Násobenie určitého zlomku a b prirodzeným číslom n možno zapísať ako vzorec a b · n = a · n b.

Je ľahké pochopiť tento vzorec, ak si pamätáte, že akékoľvek prirodzené číslo môže byť reprezentované ako obyčajný zlomok s menovateľom rovným jednej, to znamená:

a b · n = a b · n 1 = a · n b · 1 = a · n b

Vysvetlíme našu myšlienku na konkrétnych príkladoch.

Príklad 4

Vypočítajte súčin 2 27 krát 5.

Riešenie

V dôsledku vynásobenia čitateľa pôvodného zlomku druhým faktorom dostaneme 10. Na základe vyššie uvedeného pravidla dostaneme ako výsledok 10 27. Celé riešenie je uvedené v tomto príspevku:

2 27 5 = 2 5 27 = 10 27

odpoveď: 2 27 5 = 10 27

Keď vynásobíme prirodzené číslo zlomkom, často musíme výsledok skrátiť alebo reprezentovať ako zmiešané číslo.

Príklad 5

Podmienka: vypočítajte súčin 8 krát 5 12.

Riešenie

Podľa vyššie uvedeného pravidla vynásobíme prirodzené číslo čitateľom. Výsledkom je, že 5 12 8 = 5 8 12 = 40 12. Posledný zlomok má znaky deliteľnosti 2, takže ho musíme zmenšiť:

LCM (40, 12) = 4, teda 40 12 = 40: 4 12: 4 = 10 3

Teraz už len stačí vybrať celú časť a zapísať hotovú odpoveď: 10 3 = 3 1 3.

V tomto zázname môžete vidieť celé riešenie: 5 12 8 = 5 8 12 = 40 12 = 10 3 = 3 1 3.

Zlomok by sme mohli zmenšiť aj rozdelením čitateľa a menovateľa na prvočísla a výsledok by bol úplne rovnaký.

odpoveď: 5 12 8 = 3 1 3.

Číselný výraz, v ktorom je prirodzené číslo vynásobené zlomkom, má tiež vlastnosť posunutia, to znamená, že poradie faktorov neovplyvňuje výsledok:

a b · n = n · a b = a · n b

Ako vynásobiť tri alebo viac bežných zlomkov

Na násobenie obyčajných zlomkov môžeme rozšíriť tie isté vlastnosti, ktoré sú charakteristické pre násobenie prirodzených čísel. Vyplýva to zo samotnej definície týchto pojmov.

Vďaka znalostiam o kombinačných a komutatívnych vlastnostiach môžete vynásobiť tri alebo viac obyčajných zlomkov. Je prijateľné zmeniť usporiadanie faktorov pre väčšie pohodlie alebo usporiadať zátvorky spôsobom, ktorý uľahčuje počítanie.

Ukážme si na príklade, ako sa to robí.

Príklad 6

Vynásobte štyri bežné zlomky 1 20, 12 5, 3 7 a 5 8.

Riešenie: Najprv si prácu zaznamenajme. Dostaneme 1 20 · 12 5 · 3 7 · 5 8 . Musíme vynásobiť všetky čitateľa a všetky menovatele: 1 20 · 12 5 · 3 7 · 5 8 = 1 · 12 · 3 · 5 20 · 5 · 7 · 8 .

Predtým, ako začneme násobiť, môžeme si veci trochu uľahčiť a započítať niektoré čísla do hlavných faktorov pre ďalšie zníženie. Bude to jednoduchšie ako zníženie výslednej frakcie, ktorá je už pripravená.

1 12 3 5 20 5 7 8 = 1 (2 2 3) 3 5 2 2 5 5 7 (2 2 2) = 3 3 5 7 2 2 2 = 9 280

odpoveď: 1 · 12 · 3 · 5 20 · 5 · 7 · 8 = 9 280.

Príklad 7

Vynásobte 5 čísel 7 8 · 12 · 8 · 5 36 · 10 .

Riešenie

Pre pohodlie môžeme zlomok 7 8 zoskupiť s číslom 8 a číslo 12 so zlomkom 5 36, pretože budúce skratky nám budú zrejmé. V dôsledku toho dostaneme:
7 8 12 8 5 36 10 = 7 8 8 12 5 36 10 = 7 8 8 12 5 36 10 = 7 1 2 2 3 5 2 2 3 3 10 = 7 5 3 10 = 7 5 3 51 3 = 7 5 3 10 3 = 7 5 3 10 3 2 3

odpoveď: 7 8 12 8 5 36 10 = 116 2 3.

Ak si všimnete chybu v texte, zvýraznite ju a stlačte Ctrl+Enter

Minule sme sa naučili sčítať a odčítať zlomky (pozri lekciu „Sčítanie a odčítanie zlomkov“). Najťažšou časťou týchto akcií bolo priviesť zlomky k spoločnému menovateľovi.

Teraz je čas zaoberať sa násobením a delením. Dobrou správou je, že tieto operácie sú ešte jednoduchšie ako sčítanie a odčítanie. Najprv uvažujme o najjednoduchšom prípade, keď existujú dva kladné zlomky bez oddelenej celočíselnej časti.

Ak chcete vynásobiť dva zlomky, musíte vynásobiť ich čitateľov a menovateľov oddelene. Prvé číslo bude čitateľom nového zlomku a druhé bude menovateľom.

Ak chcete rozdeliť dva zlomky, musíte vynásobiť prvý zlomok „obráteným“ druhým zlomkom.

Označenie:

Z definície vyplýva, že delenie zlomkov redukuje na násobenie. Ak chcete zlomok „prevrátiť“, stačí vymeniť čitateľa a menovateľa. Preto počas celej hodiny budeme uvažovať hlavne o násobení.

Následkom násobenia môže vzniknúť (a často aj vzniká) redukovateľný zlomok – ten sa, samozrejme, musí redukovať. Ak sa po všetkých zníženiach zlomok ukáže ako nesprávny, mala by sa zvýrazniť celá časť. Čo sa však pri násobení určite nestane, je redukcia na spoločného menovateľa: žiadne krížové metódy, najväčšie faktory a najmenšie spoločné násobky.

Podľa definície máme:

Násobenie zlomkov s celými časťami a zápornými zlomkami

Ak zlomky obsahujú celé číslo, musia sa previesť na nesprávne - a až potom vynásobiť podľa schém uvedených vyššie.

Ak je v čitateli zlomku, v menovateli alebo pred ním mínus, možno ho z násobenia vyňať alebo úplne odstrániť podľa nasledujúcich pravidiel:

  1. Plus mínus dáva mínus;
  2. Dva zápory potvrdzujú.

Doteraz sme sa s týmito pravidlami stretávali len pri sčítavaní a odčítaní záporných zlomkov, kedy bolo potrebné zbaviť sa celej časti. Pre prácu ich možno zovšeobecniť, aby „spálili“ niekoľko nevýhod naraz:

  1. Negatívy vo dvojiciach škrtáme, až kým úplne nezmiznú. V extrémnych prípadoch môže prežiť jeden mínus - ten, pre ktorý nebol partner;
  2. Ak nezostali žiadne mínusy, operácia je dokončená - môžete začať násobiť. Ak posledné mínus nie je prečiarknuté, pretože k nemu nebol pár, berieme ho za hranice násobenia. Výsledkom je záporný zlomok.

Úloha. Nájdite význam výrazu:

Všetky zlomky prevedieme na nesprávne a potom z násobenia odstránime mínusky. To, čo zostalo, rozmnožíme podľa zaužívaných pravidiel. Dostaneme:

Ešte raz pripomeniem, že mínus, ktoré sa zobrazuje pred zlomkom so zvýraznenou celou časťou, sa vzťahuje konkrétne na celý zlomok, a nie len na jeho celú časť (to platí pre posledné dva príklady).

Dávajte pozor aj na záporné čísla: pri násobení sú uvedené v zátvorkách. Robí sa to preto, aby sa oddelili mínusy od znamienok násobenia a spresnil sa celý zápis.

Znižovanie frakcií za chodu

Násobenie je veľmi náročná operácia. Čísla sú tu dosť veľké a na zjednodušenie problému sa môžete pokúsiť zlomok ďalej zmenšiť pred násobením. Čitatelia a menovatelia zlomkov sú v podstate bežné faktory, a preto ich možno redukovať pomocou základnej vlastnosti zlomku. Pozrite si príklady:

Úloha. Nájdite význam výrazu:

Podľa definície máme:

Vo všetkých príkladoch sú čísla, ktoré boli znížené, a to, čo z nich zostalo, označené červenou farbou.

Poznámka: v prvom prípade boli multiplikátory úplne znížené. Na ich mieste zostávajú jednotky, ktoré sa vo všeobecnosti nemusia písať. V druhom príklade nebolo možné dosiahnuť úplné zníženie, ale celkové množstvo výpočtov sa stále znížilo.

Túto techniku ​​však nikdy nepoužívajte pri sčítavaní a odčítaní zlomkov! Áno, niekedy sa vyskytnú podobné čísla, ktoré chcete len znížiť. Tu, pozri:

To nemôžeš!

Chyba nastane, pretože pri sčítaní čitateľ zlomku vytvorí súčet, nie súčin čísel. V dôsledku toho nie je možné použiť základnú vlastnosť zlomku, pretože táto vlastnosť sa zaoberá špecificky násobením čísel.

Jednoducho neexistujú žiadne iné dôvody na zníženie zlomkov, takže správne riešenie predchádzajúceho problému vyzerá takto:

Správne riešenie:

Ako vidíte, správna odpoveď nebola taká krásna. Vo všeobecnosti buďte opatrní.



Podobné články