Nájdenie oblasti ohraničenej čiarami. Určitý integrál

16.10.2019

Poďme ďalej zvážiť aplikácie integrálneho počtu. V tejto lekcii budeme analyzovať typickú a najbežnejšiu úlohu výpočet plochy rovinného útvaru pomocou určitého integrálu. Napokon, nech ho nájdu všetci tí, ktorí hľadajú zmysel vo vyššej matematike. Nikdy nevieš. V reálnom živote budete musieť aproximovať dacha pomocou elementárnych funkcií a nájsť jej plochu pomocou určitého integrálu.

Ak chcete úspešne zvládnuť materiál, musíte:

1) Pochopte neurčitý integrál aspoň na strednej úrovni. Preto by si figuríny mali lekciu najskôr prečítať nie.

2) Byť schopný použiť Newtonov-Leibnizov vzorec a vypočítať určitý integrál. S určitými integrálmi na stránke môžete nadviazať vrúcne priateľské vzťahy Určitý integrál. Príklady riešení. Úloha „vypočítať plochu pomocou určitého integrálu“ vždy zahŕňa vytvorenie výkresu, takže relevantnou otázkou budú aj vaše znalosti a zručnosti v kreslení. Minimálne musíte byť schopní zostrojiť priamku, parabolu a hyperbolu.

Začnime so zakriveným lichobežníkom. Zakrivený lichobežník je plochý útvar ohraničený grafom nejakej funkcie r = f(X), os VÔL a linky X = a; X = b.

Plocha krivočiareho lichobežníka sa číselne rovná určitému integrálu

Akýkoľvek určitý integrál (ktorý existuje) má veľmi dobrý geometrický význam. Na lekcii Určitý integrál. Príklady riešení povedali sme, že určitý integrál je číslo. A teraz je čas uviesť ďalší užitočný fakt. Z hľadiska geometrie je určitým integrálom PLOCHA. teda určitý integrál (ak existuje) geometricky zodpovedá ploche určitého útvaru. Zvážte určitý integrál

Integrand

definuje krivku v rovine (v prípade potreby ju možno nakresliť) a samotný určitý integrál sa numericky rovná ploche zodpovedajúceho krivočiareho lichobežníka.



Príklad 1

, , , .

Toto je typický príkaz na zadanie. Najdôležitejším bodom pri rozhodovaní je konštrukcia výkresu. Okrem toho musí byť výkres vytvorený SPRÁVNY.

Pri konštrukcii výkresu odporúčam nasledovné poradie: najprv je lepšie zostrojiť všetky priame čiary (ak existujú) a len Potom– paraboly, hyperboly, grafy iných funkcií. Techniku ​​výstavby bod po bode nájdete v referenčnom materiáli Grafy a vlastnosti elementárnych funkcií. Nájdete tam aj veľmi užitočný materiál pre našu lekciu - ako rýchlo postaviť parabolu.

V tomto probléme môže riešenie vyzerať takto.

Urobme kresbu (všimnite si, že rovnica r= 0 určuje os VÔL):

Zakrivený lichobežník nezatienime, tu je zrejmé, o akú oblasť ide. Riešenie pokračuje takto:

Na segmente [-2; 1] funkčný graf r = X 2 + 2 sa nachádza nad osouVÔL, Preto:

odpoveď: .

Kto má problémy s výpočtom určitého integrálu a aplikáciou Newton-Leibnizovho vzorca

,

odkazovať na prednášku Určitý integrál. Príklady riešení. Po dokončení úlohy je vždy užitočné pozrieť sa na výkres a zistiť, či je odpoveď skutočná. V tomto prípade počítame počet buniek na výkrese „okom“ - no, bude ich asi 9, zdá sa, že je to pravda. Je úplne jasné, že ak sme dostali povedzme odpoveď: 20 štvorcových jednotiek, tak je zrejmé, že niekde sa stala chyba – 20 buniek sa evidentne nezmestí do predmetného čísla, maximálne tucet. Ak je odpoveď záporná, úloha bola tiež vyriešená nesprávne.

Príklad 2

Vypočítajte plochu obrázku ohraničenú čiarami xy = 4, X = 2, X= 4 a os VÔL.

Toto je príklad, ktorý môžete vyriešiť sami. Úplné riešenie a odpoveď na konci hodiny.

Čo robiť, ak sa nachádza zakrivený lichobežník pod nápravouVÔL?

Príklad 3

Vypočítajte plochu obrázku ohraničenú čiarami r = e-x, X= 1 a súradnicové osi.

Riešenie: Urobme kresbu:

Ak zakrivený lichobežník úplne umiestnené pod osou VÔL , potom jeho oblasť možno nájsť pomocou vzorca:

V tomto prípade:

.

Pozor! Tieto dva typy úloh by sa nemali zamieňať:

1) Ak vás požiadajú, aby ste jednoducho vyriešili určitý integrál bez akéhokoľvek geometrického významu, potom môže byť záporný.

2) Ak ste požiadaní, aby ste našli plochu obrazca pomocou určitého integrálu, potom je plocha vždy kladná! Preto sa v práve diskutovanom vzorci objavuje mínus.

V praxi sa obrazca najčastejšie nachádza v hornej aj dolnej polrovine, a preto od najjednoduchších školských úloh prechádzame k zmysluplnejším príkladom.

Príklad 4

Nájdite plochu rovinnej postavy ohraničenú čiarami r = 2XX 2 , r = -X.

Riešenie: Najprv musíte urobiť kresbu. Pri konštrukcii výkresu v plošných úlohách nás najviac zaujímajú priesečníky čiar. Nájdite priesečníky paraboly r = 2XX 2 a rovno r = -X. Dá sa to urobiť dvoma spôsobmi. Prvá metóda je analytická. Riešime rovnicu:

To znamená, že spodná hranica integrácie a= 0, horná hranica integrácie b= 3. Často je ziskovejšie a rýchlejšie konštruovať čiary bod po bode a hranice integrácie sa vyjasnia „samo od seba“. Analytická metóda hľadania limitov sa však stále niekedy musí použiť, ak je napríklad graf dostatočne veľký alebo podrobná konštrukcia neodhalila limity integrácie (môžu byť zlomkové alebo iracionálne). Vráťme sa k našej úlohe: racionálnejšie je najprv zostrojiť priamku a až potom parabolu. Urobme výkres:

Zopakujme, že pri bodovej konštrukcii sa hranice integrácie najčastejšie určujú „automaticky“.

A teraz pracovný vzorec:

Ak na segmente [ a; b] nejaká nepretržitá funkcia f(X) väčšie alebo rovné nejaká nepretržitá funkcia g(X), potom oblasť zodpovedajúceho obrázku možno nájsť pomocou vzorca:

Tu už nemusíte premýšľať o tom, kde sa postava nachádza - nad osou alebo pod osou, ale záleží, ktorý graf je VYŠŠIE(vo vzťahu k inému grafu), a ktorý je NIŽŠIE.

V uvažovanom príklade je zrejmé, že na segmente sa parabola nachádza nad priamkou, a preto od 2. XX 2 treba odpočítať – X.

Hotové riešenie môže vyzerať takto:

Požadovaná hodnota je obmedzená parabolou r = 2XX 2 hore a rovno r = -X nižšie.

V segmente 2 XX 2 ≥ -X. Podľa zodpovedajúceho vzorca:

odpoveď: .

V skutočnosti je školský vzorec pre oblasť krivočiareho lichobežníka v dolnej polrovine (pozri príklad č. 3) špeciálnym prípadom vzorca

.

Pretože os VÔL daný rovnicou r= 0 a graf funkcie g(X) umiestnený pod osou VÔL, To

.

A teraz pár príkladov pre vlastné riešenie

Príklad 5

Príklad 6

Nájdite oblasť obrázku ohraničenú čiarami

Pri riešení problémov s výpočtom plochy pomocou určitého integrálu sa niekedy stane vtipná príhoda. Kresba bola urobená správne, výpočty boli správne, ale kvôli neopatrnosti... Bola nájdená oblasť nesprávnej postavy.

Príklad 7

Najprv urobme kresbu:

Postava, ktorej oblasť potrebujeme nájsť, je vytieňovaná modrou farbou(pozorne sa pozrite na stav - ako je postava obmedzená!). V praxi sa však ľudia kvôli nepozornosti často rozhodnú, že musia nájsť oblasť postavy, ktorá je zatienená zelenou farbou!

Tento príklad je tiež užitočný, pretože vypočítava plochu obrazca pomocou dvoch určitých integrálov. naozaj:

1) Na segmente [-1; 1] nad osou VÔL graf je umiestnený rovno r = X+1;

2) Na segmente nad osou VÔL nachádza sa graf hyperboly r = (2/X).

Je celkom zrejmé, že oblasti sa môžu (a mali by) pridať, preto:

odpoveď:

Príklad 8

Vypočítajte plochu obrázku ohraničenú čiarami

Uveďme rovnice v „školskej“ forme

a urobte bod po bode nákres:

Z nákresu je zrejmé, že naša horná hranica je „dobrá“: b = 1.

Ale aká je spodná hranica?! Je jasné, že to nie je celé číslo, ale čo to je?

Možno, a= (-1/3)? Ale kde je záruka, že výkres je vyrobený s dokonalou presnosťou, môže sa to ukázať a= (-1/4). Čo ak sme graf zostavili nesprávne?

V takýchto prípadoch musíte stráviť viac času a analyticky si ujasniť hranice integrácie.

Poďme nájsť priesečníky grafov

Aby sme to dosiahli, riešime rovnicu:

.

teda a=(-1/3).

Ďalšie riešenie je triviálne. Hlavnou vecou nie je zmiasť sa v zámenách a znakoch. Výpočty tu nie sú najjednoduchšie. Na segmente

, ,

podľa zodpovedajúceho vzorca:

odpoveď:

Na záver lekcie sa pozrime na dve náročnejšie úlohy.

Príklad 9

Vypočítajte plochu obrázku ohraničenú čiarami

Riešenie: Znázornime tento obrázok na výkrese.

Na zostavenie bodového výkresu potrebujete poznať vzhľad sínusoidy. Vo všeobecnosti je užitočné poznať grafy všetkých elementárnych funkcií, ako aj niektoré sínusové hodnoty. Nájdete ich v tabuľke hodnôt goniometrické funkcie. V niektorých prípadoch (napríklad v tomto prípade) je možné zostrojiť schematický výkres, na ktorom by mali byť grafy a limity integrácie zásadne správne zobrazené.

Tu nie sú žiadne problémy s limitmi integrácie, vyplývajú priamo z podmienky:

– „x“ sa zmení z nuly na „pi“. Urobme ďalšie rozhodnutie:

Na segmente, grafe funkcie r= hriech 3 X umiestnený nad osou VÔL, Preto:

(1) V lekcii môžete vidieť, ako sú sínusy a kosínusy integrované do nepárnych mocnín Integrály goniometrických funkcií. Odštípneme jeden sínus.

(2) Vo formulári používame hlavnú goniometrickú identitu

(3) Zmeňme premennú t=cos X, potom: sa nachádza nad osou, preto:

.

.

Poznámka: všimnite si, ako sa berie integrál tangensovej kocky; tu je použitý dôsledok základnej goniometrickej identity

.

Určitý integrál. Ako vypočítať plochu obrázku

Poďme ďalej zvážiť aplikácie integrálneho počtu. V tejto lekcii budeme analyzovať typickú a najbežnejšiu úlohu - ako použiť určitý integrál na výpočet plochy rovinného útvaru. Konečne tí, ktorí hľadajú zmysel vo vyššej matematike – nech ho nájdu. Nikdy nevieš. V reálnom živote budete musieť aproximovať dacha pomocou elementárnych funkcií a nájsť jej plochu pomocou určitého integrálu.

Ak chcete úspešne zvládnuť materiál, musíte:

1) Pochopte neurčitý integrál aspoň na strednej úrovni. Preto by si figuríny mali lekciu najskôr prečítať nie.

2) Byť schopný použiť Newtonov-Leibnizov vzorec a vypočítať určitý integrál. S určitými integrálmi na stránke môžete nadviazať vrúcne priateľské vzťahy Určitý integrál. Príklady riešení.

V skutočnosti, aby ste našli oblasť obrazca, nepotrebujete toľko vedomostí o neurčitom a určitom integráli. Úloha „vypočítať plochu pomocou určitého integrálu“ vždy zahŕňa vytvorenie výkresu, takže vaše znalosti a zručnosti v kreslení budú oveľa naliehavejším problémom. V tomto smere je užitočné osviežiť si pamäť grafov základných elementárnych funkcií a minimálne vedieť zostrojiť priamku, parabolu a hyperbolu. To sa dá (pre mnohých nevyhnutné) pomocou metodického materiálu a článku o geometrických transformáciách grafov.

Úlohu nájsť oblasť pomocou určitého integrálu pozná vlastne každý už od školy a ďalej než k školským osnovám nepôjdeme. Tento článok by možno vôbec neexistoval, no faktom je, že problém nastáva v 99 prípadoch zo 100, keď študent trpí nenávidenou školou a s nadšením ovláda kurz vyššej matematiky.

Materiály tohto workshopu sú prezentované jednoducho, podrobne a s minimom teórie.

Začnime so zakriveným lichobežníkom.

Krivočiary lichobežník je plochý útvar ohraničený osou, priamkami a grafom funkcie súvislej na intervale, ktorý na tomto intervale nemení znamienko. Nechajte tento obrázok nájsť nie menej os x:

Potom plocha krivočiareho lichobežníka sa číselne rovná určitému integrálu. Akýkoľvek určitý integrál (ktorý existuje) má veľmi dobrý geometrický význam. Na lekcii Určitý integrál. Príklady riešení Povedal som, že určitý integrál je číslo. A teraz je čas uviesť ďalší užitočný fakt. Z hľadiska geometrie je určitým integrálom PLOCHA.

teda určitý integrál (ak existuje) geometricky zodpovedá ploche určitého útvaru. Uvažujme napríklad určitý integrál. Integrand definuje krivku v rovine umiestnenej nad osou (tí, ktorí si to želajú, môžu kresliť) a samotný určitý integrál sa číselne rovná ploche zodpovedajúceho krivočiareho lichobežníka.

Príklad 1

Toto je typický príkaz na zadanie. Prvým a najdôležitejším bodom pri rozhodovaní je konštrukcia výkresu. Okrem toho musí byť výkres vytvorený SPRÁVNY.

Pri konštrukcii výkresu odporúčam nasledovné poradie: najprv je lepšie zostrojiť všetky priame čiary (ak existujú) a len Potom– paraboly, hyperboly, grafy iných funkcií. Je výhodnejšie vytvárať grafy funkcií bod po bode, techniku ​​konštrukcie bod po bode nájdete v referenčnom materiáli Grafy a vlastnosti elementárnych funkcií. Nájdete tam aj veľmi užitočný materiál pre našu lekciu - ako rýchlo postaviť parabolu.

V tomto probléme môže riešenie vyzerať takto.
Nakreslíme výkres (všimnite si, že rovnica definuje os):


Nebudem tieniť zakrivený lichobežník, tu je zrejmé, o ktorej oblasti hovoríme. Riešenie pokračuje takto:

Na segmente sa nachádza graf funkcie nad osou, Preto:

odpoveď:

Kto má problémy s výpočtom určitého integrálu a aplikáciou Newton-Leibnizovho vzorca , pozrite si prednášku Určitý integrál. Príklady riešení.

Po dokončení úlohy je vždy užitočné pozrieť sa na výkres a zistiť, či je odpoveď skutočná. V tomto prípade počítame počet buniek na výkrese „okom“ - no, bude ich asi 9, zdá sa, že je to pravda. Je úplne jasné, že ak sme dostali povedzme odpoveď: 20 štvorcových jednotiek, tak je zrejmé, že niekde sa stala chyba – 20 buniek sa evidentne nezmestí do predmetného čísla, maximálne tucet. Ak je odpoveď záporná, úloha bola tiež vyriešená nesprávne.

Príklad 2

Vypočítajte plochu obrazca ohraničenú čiarami, a osami

Toto je príklad, ktorý môžete vyriešiť sami. Úplné riešenie a odpoveď na konci hodiny.

Čo robiť, ak sa nachádza zakrivený lichobežník pod nápravou?

Príklad 3

Vypočítajte plochu obrázku ohraničenú čiarami a súradnicovými osami.

Riešenie: Urobme kresbu:

Ak je umiestnený zakrivený lichobežník pod nápravou(alebo nakoniec nie vyššie danú os), potom jeho plochu možno nájsť pomocou vzorca:
V tomto prípade:

Pozor! Tieto dva typy úloh by sa nemali zamieňať:

1) Ak vás požiadajú, aby ste jednoducho vyriešili určitý integrál bez akéhokoľvek geometrického významu, potom môže byť záporný.

2) Ak ste požiadaní, aby ste našli plochu obrazca pomocou určitého integrálu, potom je plocha vždy kladná! Preto sa v práve diskutovanom vzorci objavuje mínus.

V praxi sa obrazca najčastejšie nachádza v hornej aj dolnej polrovine, a preto od najjednoduchších školských úloh prechádzame k zmysluplnejším príkladom.

Príklad 4

Nájdite plochu rovinnej postavy ohraničenú čiarami , .

Riešenie: Najprv musíte dokončiť výkres. Všeobecne povedané, pri konštrukcii výkresu v plošných úlohách nás najviac zaujímajú priesečníky čiar. Nájdite priesečníky paraboly a priamky. Dá sa to urobiť dvoma spôsobmi. Prvá metóda je analytická. Riešime rovnicu:

To znamená, že dolná hranica integrácie je , horná hranica integrácie je .
Ak je to možné, je lepšie túto metódu nepoužívať..

Je oveľa výnosnejšie a rýchlejšie stavať čiary bod po bode a hranice integrácie sa vyjasnia „samo od seba“. Technika vytvárania bodov po bode pre rôzne grafy je podrobne popísaná v pomocníkovi Grafy a vlastnosti elementárnych funkcií. Analytická metóda hľadania limitov sa však stále niekedy musí použiť, ak je napríklad graf dostatočne veľký alebo podrobná konštrukcia neodhalila limity integrácie (môžu byť zlomkové alebo iracionálne). A tiež zvážime taký príklad.

Vráťme sa k našej úlohe: racionálnejšie je najprv zostrojiť priamku a až potom parabolu. Urobme výkres:

Opakujem, že pri bodovej konštrukcii sa hranice integrácie najčastejšie zisťujú „automaticky“.

A teraz pracovný vzorec: Ak je na segmente nejaká súvislá funkcia väčšie alebo rovné nejaká spojitá funkcia , potom oblasť obrázku ohraničená grafmi týchto funkcií a čiarami , možno nájsť pomocou vzorca:

Tu už nemusíte premýšľať o tom, kde sa postava nachádza - nad osou alebo pod osou, a zhruba povedané, záleží, ktorý graf je VYŠŠIE(vo vzťahu k inému grafu), a ktorý je NIŽŠIE.

V uvažovanom príklade je zrejmé, že na segmente sa parabola nachádza nad priamkou, a preto je potrebné odpočítať od

Hotové riešenie môže vyzerať takto:

Požadovaná hodnota je obmedzená parabolou nad a priamkou pod ňou.
Na segmente podľa zodpovedajúceho vzorca:

odpoveď:

V skutočnosti je školský vzorec pre oblasť krivočiareho lichobežníka v dolnej polrovine (pozri jednoduchý príklad č. 3) špeciálnym prípadom vzorca . Keďže os je určená rovnicou a graf funkcie je umiestnený nie vyššie osy teda

A teraz pár príkladov pre vlastné riešenie

Príklad 5

Príklad 6

Nájdite oblasť obrázku ohraničenú čiarami , .

Pri riešení problémov s výpočtom plochy pomocou určitého integrálu sa niekedy stane vtipná príhoda. Kresba bola urobená správne, výpočty boli správne, ale kvôli neopatrnosti... bola nájdená oblasť nesprávneho obrázku, presne takto sa tvoj skromný sluha niekoľkokrát posral. Tu je skutočný prípad:

Príklad 7

Vypočítajte plochu obrázku ohraničenú čiarami , , , .

Riešenie: Najprv si urobme kresbu:

...Eh, kresba mi vyšla, ale všetko sa zdá byť čitateľné.

Postava, ktorej oblasť potrebujeme nájsť, je vytieňovaná modrou farbou(pozorne sa pozrite na stav - ako je postava obmedzená!). V praxi sa však v dôsledku nepozornosti často vyskytuje „závada“, že musíte nájsť oblasť postavy, ktorá je zatienená zelenou farbou!

Tento príklad je užitočný aj v tom, že vypočítava plochu obrazca pomocou dvoch určitých integrálov. naozaj:

1) Na segmente nad osou je graf priamky;

2) Na segmente nad osou je graf hyperboly.

Je celkom zrejmé, že oblasti sa môžu (a mali by) pridať, preto:

odpoveď:

Prejdime k ďalšej zmysluplnej úlohe.

Príklad 8

Vypočítajte plochu obrazca ohraničenú čiarami,
Predstavme si rovnice v „školskej“ forme a urobme bod po bode:

Z nákresu je zrejmé, že naša horná hranica je „dobrá“: .
Ale aká je spodná hranica?! Je jasné, že to nie je celé číslo, ale čo to je? Možno ? Ale kde je záruka, že výkres je vyrobený s dokonalou presnosťou, môže sa dobre ukázať, že... Alebo koreň. Čo ak sme graf zostavili nesprávne?

V takýchto prípadoch musíte stráviť viac času a analyticky si ujasniť hranice integrácie.

Nájdite priesečníky priamky a paraboly.
Aby sme to dosiahli, riešime rovnicu:


,

Naozaj,.

Ďalšie riešenie je triviálne, hlavnou vecou nie je zmiasť sa v zámenách a znamienkach, výpočty tu nie sú najjednoduchšie.

Na segmente , podľa zodpovedajúceho vzorca:

odpoveď:

Na záver lekcie sa pozrime na dve zložitejšie úlohy.

Príklad 9

Vypočítajte plochu obrázku ohraničenú čiarami , ,

Riešenie: Znázornime túto postavu na výkrese.

Sakra, zabudol som podpísať rozvrh a, prepáčte, nechcel som prerobiť obrázok. Nie je deň kreslenia, skrátka dnes je ten deň =)

Pre stavbu bod po bode je potrebné poznať vzhľad sínusoidy (a vo všeobecnosti je užitočné poznať grafy všetkých elementárnych funkcií), ako aj niektoré sínusové hodnoty, možno ich nájsť v trigonometrická tabuľka. V niektorých prípadoch (ako v tomto prípade) je možné zostrojiť schematický nákres, na ktorom by mali byť grafy a limity integrácie zásadne správne zobrazené.

Tu nie sú žiadne problémy s limitmi integrácie, vyplývajú priamo z podmienky: „x“ sa mení z nuly na „pi“. Urobme ďalšie rozhodnutie:

Na segmente je graf funkcie umiestnený nad osou, preto:

V predchádzajúcej časti, venovanej analýze geometrického významu určitého integrálu, sme dostali niekoľko vzorcov na výpočet plochy krivočiareho lichobežníka:

Yandex.RTB R-A-339285-1

S (G) = ∫ a b f (x) d x pre spojitú a nezápornú funkciu y = f (x) na intervale [ a ; b],

S (G) = - ∫ a b f (x) d x pre spojitú a nekladnú funkciu y = f (x) na intervale [ a ; b].

Tieto vzorce sú použiteľné na riešenie relatívne jednoduchých problémov. V skutočnosti budeme musieť často pracovať so zložitejšími obrazcami. V tejto súvislosti budeme túto časť venovať analýze algoritmov na výpočet plochy obrazcov, ktoré sú obmedzené funkciami v explicitnej forme, t.j. ako y = f(x) alebo x = g(y).

Veta

Nech sú funkcie y = f 1 (x) a y = f 2 (x) definované a spojité na intervale [ a ; b] a f 1 (x) ≤ f 2 (x) pre akúkoľvek hodnotu x z [ a ; b]. Potom bude vzorec na výpočet plochy obrázku G ohraničený priamkami x = a, x = b, y = f 1 (x) a y = f 2 (x) vyzerať ako S (G) = ∫ a b f 2 (x) - f 1 (x) d x.

Podobný vzorec bude platiť pre oblasť obrazca ohraničenú priamkami y = c, y = d, x = g 1 (y) a x = g 2 (y): S (G) = ∫ c d ( g 2 (y) - g 1 (y) d y .

Dôkaz

Pozrime sa na tri prípady, pre ktoré bude vzorec platiť.

V prvom prípade, berúc do úvahy vlastnosť aditivity plochy, sa súčet plôch pôvodného obrázku G a krivočiareho lichobežníka G 1 rovná ploche obrázku G 2. Znamená to, že

Preto S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx.

Posledný prechod môžeme vykonať pomocou tretej vlastnosti určitého integrálu.

V druhom prípade platí rovnosť: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( x) - f 1 (x)) d x

Grafické znázornenie bude vyzerať takto:

Ak sú obe funkcie kladné, dostaneme: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x. Grafické znázornenie bude vyzerať takto:

Prejdime k všeobecnému prípadu, keď y = f 1 (x) a y = f 2 (x) pretínajú os O x.

Priesečníky označíme ako x i, i = 1, 2, . . . , n-1. Tieto body rozdeľujú segment [a; b] na n častí x i-1; x i, i = 1, 2,. . . , n, kde α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

teda

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Posledný prechod môžeme urobiť pomocou piatej vlastnosti určitého integrálu.

Znázornime všeobecný prípad na grafe.

Vzorec S (G) = ∫ a b f 2 (x) - f 1 (x) d x možno považovať za preukázaný.

Teraz prejdime k analýze príkladov výpočtu plochy obrázkov, ktoré sú obmedzené priamkami y = f (x) a x = g (y).

Uvažovanie o ktoromkoľvek z príkladov začneme zostrojením grafu. Obrázok nám umožní reprezentovať zložité tvary ako spojenia jednoduchších tvarov. Ak je pre vás zostavovanie grafov a obrázkov na nich náročné, môžete si pri štúdiu funkcie naštudovať časť o základných elementárnych funkciách, geometrickej transformácii grafov funkcií, ako aj o zostavovaní grafov.

Príklad 1

Je potrebné určiť plochu obrázku, ktorá je obmedzená parabolou y = - x 2 + 6 x - 5 a priamkami y = - 1 3 x - 1 2, x = 1, x = 4.

Riešenie

Nakreslíme čiary na grafe v karteziánskom súradnicovom systéme.

Na segmente [1; 4 ] graf paraboly y = - x 2 + 6 x - 5 sa nachádza nad priamkou y = - 1 3 x - 1 2. V tomto ohľade na získanie odpovede používame vzorec získaný skôr, ako aj metódu výpočtu určitého integrálu pomocou vzorca Newton-Leibniz:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Odpoveď: S(G) = 13

Pozrime sa na zložitejší príklad.

Príklad 2

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená čiarami y = x + 2, y = x, x = 7.

Riešenie

V tomto prípade máme len jednu priamku umiestnenú rovnobežne s osou x. Toto je x = 7. To si vyžaduje, aby sme sami našli druhú hranicu integrácie.

Zostavme graf a nakreslite naň čiary uvedené v probléme.

Keď máme graf pred očami, môžeme ľahko určiť, že dolná hranica integrácie bude úsečka priesečníka grafu priamky y = x a semiparaboly y = x + 2. Na nájdenie abscisy používame rovnosti:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O DZ x 2 = 1 - 9 2 = - 1 ∉ O DZ

Ukazuje sa, že úsečka priesečníka je x = 2.

Upozorňujeme na skutočnosť, že vo všeobecnom príklade na výkrese sa priamky y = x + 2, y = x pretínajú v bode (2; 2), takže takéto podrobné výpočty sa môžu zdať zbytočné. Takéto podrobné riešenie sme tu poskytli len preto, že v zložitejších prípadoch nemusí byť riešenie také zrejmé. To znamená, že súradnice priesečníka čiar je vždy lepšie vypočítať analyticky.

Na intervale [ 2 ; 7] graf funkcie y = x sa nachádza nad grafom funkcie y = x + 2. Použime vzorec na výpočet plochy:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Odpoveď: S (G) = 59 6

Príklad 3

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená grafmi funkcií y = 1 x a y = - x 2 + 4 x - 2.

Riešenie

Nakreslíme čiary do grafu.

Definujme hranice integrácie. Aby sme to dosiahli, určíme súradnice priesečníkov priamok porovnaním výrazov 1 x a - x 2 + 4 x - 2. Za predpokladu, že x nie je nula, rovnosť 1 x = - x 2 + 4 x - 2 sa stáva ekvivalentnou rovnici tretieho stupňa - x 3 + 4 x 2 - 2 x - 1 = 0 s celočíselnými koeficientmi. Ak si chcete osviežiť pamäť na algoritmus na riešenie takýchto rovníc, môžeme si pozrieť časť „Riešenie kubických rovníc“.

Koreň tejto rovnice je x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0.

Vydelením výrazu - x 3 + 4 x 2 - 2 x - 1 dvojčlenkou x - 1 dostaneme: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Zostávajúce korene nájdeme z rovnice x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0. 3

Našli sme interval x ∈ 1; 3 + 13 2, v ktorom je číslica G obsiahnutá nad modrou a pod červenou čiarou. To nám pomáha určiť oblasť obrázku:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Odpoveď: S (G) = 7 + 13 3 - ln 3 + 13 2

Príklad 4

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená krivkami y = x 3, y = - log 2 x + 1 a osou x.

Riešenie

Nakreslite všetky čiary do grafu. Graf funkcie y = - log 2 x + 1 dostaneme z grafu y = log 2 x, ak ho umiestnime symetricky okolo osi x a posunieme o jednotku nahor. Rovnica osi x je y = 0.

Označme priesečníky čiar.

Ako vidno z obrázku, grafy funkcií y = x 3 a y = 0 sa pretínajú v bode (0; 0). Stáva sa to preto, že x = 0 je jediným skutočným koreňom rovnice x 3 = 0.

x = 2 je jediný koreň rovnice - log 2 x + 1 = 0, teda grafy funkcií y = - log 2 x + 1 a y = 0 sa pretínajú v bode (2; 0).

x = 1 je jediný koreň rovnice x 3 = - log 2 x + 1 . V tomto smere sa grafy funkcií y = x 3 a y = - log 2 x + 1 pretínajú v bode (1; 1). Posledné tvrdenie nemusí byť zrejmé, ale rovnica x 3 = - log 2 x + 1 nemôže mať viac ako jeden koreň, pretože funkcia y = x 3 je striktne rastúca a funkcia y = - log 2 x + 1 je prísne klesá.

Ďalšie riešenie zahŕňa niekoľko možností.

Možnosť 1

Obrázok G si môžeme predstaviť ako súčet dvoch krivočiarych lichobežníkov umiestnených nad osou x, z ktorých prvý sa nachádza pod stredovou čiarou na úsečke x ∈ 0; 1 a druhý je pod červenou čiarou na segmente x ∈ 1; 2. To znamená, že plocha sa bude rovnať S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Možnosť č.2

Obrázok G môže byť znázornený ako rozdiel dvoch obrázkov, z ktorých prvý je umiestnený nad osou x a pod modrou čiarou na segmente x ∈ 0; 2 a druhú medzi červenou a modrou čiarou na segmente x ∈ 1; 2. To nám umožňuje nájsť oblasť takto:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

V tomto prípade na nájdenie oblasti budete musieť použiť vzorec v tvare S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y. V skutočnosti môžu byť čiary, ktoré ohraničujú obrazec, reprezentované ako funkcie argumentu y.

Vyriešme rovnice y = x 3 a - log 2 x + 1 vzhľadom na x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Získame požadovanú oblasť:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Odpoveď: S (G) = 1 ln 2 - 1 4

Príklad 5

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená čiarami y = x, y = 2 3 x - 3, y = - 1 2 x + 4.

Riešenie

Červenou čiarou nakreslíme čiaru definovanú funkciou y = x. Čiaru y = - 1 2 x + 4 nakreslíme modrou a čiaru y = 2 3 x - 3 čiernou farbou.

Označme priesečníky.

Nájdite priesečníky grafov funkcií y = x a y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 = 144 x 1 = 20 + 144 2 = 16; x 2 = 20 - 144 2 = 4 Skontrolujte: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 nie Je riešením rovnice x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 je riešením rovnice ⇒ (4; 2) priesečník i y = x a y = - 1 2 x + 4

Nájdite priesečník grafov funkcií y = x a y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 x 1 = 45 + 729 8 = 9, x 2 45 - 729 8 = 9 4 Kontrola: x 1 = 9 = 3, 2 3 x 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 je riešením rovnice ⇒ (9 ; 3) bod a s y = x a y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 Rovnica nemá riešenie

Nájdite priesečník priamok y = - 1 2 x + 4 a y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1 ) priesečník y = - 1 2 x + 4 a y = 2 3 x - 3

Metóda č.1

Predstavme si plochu požadovaného obrazca ako súčet plôch jednotlivých obrazcov.

Potom je plocha obrázku:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Metóda č.2

Plochu pôvodnej figúry možno znázorniť ako súčet dvoch ďalších figúrok.

Potom vyriešime rovnicu čiary vzhľadom na x a až potom použijeme vzorec na výpočet plochy obrázku.

y = x ⇒ x = y 2 červená čiara y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 čierna čiara y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i a l i n e

Oblasť je teda:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d 2 + ∫ 3 3 2 r + 9 2 - r 2 r = = 7 4 r. 2 - 7 4 r. 1 2 + - r. 3 3 + 3 r. 2 4 + 9 2 r. 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

Ako vidíte, hodnoty sú rovnaké.

Odpoveď: S (G) = 11 3

Výsledky

Aby sme našli oblasť obrázku, ktorá je obmedzená danými čiarami, musíme vytvoriť čiary v rovine, nájsť ich priesečníky a použiť vzorec na nájdenie oblasti. V tejto časti sme preskúmali najbežnejšie varianty úloh.

Ak si všimnete chybu v texte, zvýraznite ju a stlačte Ctrl+Enter

V tomto článku sa dozviete, ako nájsť oblasť obrázku ohraničenú čiarami pomocou integrálnych výpočtov. Prvýkrát sa s formuláciou takéhoto problému stretávame na strednej škole, keď sme práve ukončili štúdium určitých integrálov a je čas začať s geometrickým výkladom získaných poznatkov v praxi.

Čo je teda potrebné na úspešné vyriešenie problému nájdenia oblasti obrázku pomocou integrálov:

  • Schopnosť robiť kompetentné výkresy;
  • Schopnosť riešiť určitý integrál pomocou známeho Newtonovho-Leibnizovho vzorca;
  • Schopnosť „vidieť“ výnosnejšiu možnosť riešenia – t.j. pochopiť, ako bude pohodlnejšie vykonať integráciu v jednom alebo druhom prípade? Pozdĺž osi x (OX) alebo osi y (OY)?
  • Kde by sme boli bez správnych výpočtov?) To zahŕňa pochopenie toho, ako vyriešiť tento iný typ integrálov a správne numerické výpočty.

Algoritmus na riešenie problému výpočtu plochy obrazca ohraničeného čiarami:

1. Vytvárame výkres. Je vhodné to urobiť na kockovanom papieri vo veľkom meradle. Názov tejto funkcie podpíšeme ceruzkou nad každým grafom. Podpisovanie grafov sa vykonáva výlučne pre pohodlie ďalších výpočtov. Po získaní grafu požadovaného čísla bude vo väčšine prípadov okamžite jasné, ktoré limity integrácie sa použijú. Úlohu teda riešime graficky. Stáva sa však, že hodnoty limitov sú zlomkové alebo iracionálne. Preto môžete vykonať ďalšie výpočty, prejdite na druhý krok.

2. Ak nie sú hranice integrácie explicitne špecifikované, nájdeme priesečníky grafov medzi sebou a uvidíme, či sa naše grafické riešenie zhoduje s analytickým.

3. Ďalej musíte analyzovať výkres. V závislosti od toho, ako sú grafy funkcií usporiadané, existujú rôzne prístupy k nájdeniu oblasti obrázku. Pozrime sa na rôzne príklady hľadania oblasti obrazca pomocou integrálov.

3.1. Najklasickejšia a najjednoduchšia verzia problému je, keď potrebujete nájsť oblasť zakriveného lichobežníka. Čo je to zakrivený lichobežník? Toto je plochý údaj ohraničený osou x (y = 0), rovný x = a, x = b a ľubovoľná krivka súvislá na intervale od a predtým b. Navyše tento údaj nie je záporný a nenachádza sa pod osou x. V tomto prípade sa plocha krivočiareho lichobežníka numericky rovná určitému integrálu, vypočítanému pomocou vzorca Newton-Leibniz:

Príklad 1 y = x2 – 3x + 3, x = 1, x = 3, y = 0.

Akými čiarami je obrazec ohraničený? Máme parabolu y = x2 – 3x + 3, ktorá sa nachádza nad osou OH, je nezáporné, pretože všetky body tejto paraboly majú kladné hodnoty. Ďalej, dané rovné čiary x = 1 A x = 3, ktoré prebiehajú rovnobežne s osou OU, sú hraničné čiary obrázku vľavo a vpravo. Dobre y = 0, je to aj os x, ktorá obmedzuje obrázok zdola. Výsledný obrázok je vytieňovaný, ako je možné vidieť na obrázku vľavo. V takom prípade môžete problém okamžite začať riešiť. Pred nami je jednoduchý príklad zakriveného lichobežníka, ktorý potom vyriešime pomocou Newtonovho-Leibnizovho vzorca.

3.2. V predchádzajúcom odseku 3.1 sme skúmali prípad, keď sa nad osou x nachádza zakrivený lichobežník. Teraz zvážte prípad, keď sú podmienky problému rovnaké, okrem toho, že funkcia leží pod osou x. K štandardnému Newton-Leibnizovmu vzorcu sa pridáva mínus. Ako vyriešiť takýto problém, zvážime nižšie.

Príklad 2 . Vypočítajte plochu obrázku ohraničenú čiarami y = x2 + 6x + 2, x = -4, x = -1, y = 0.

V tomto príklade máme parabolu y = x2 + 6x + 2, ktorý vychádza z os OH, rovný x = -4, x = -1, y = 0. Tu y = 0 obmedzuje požadovanú hodnotu zhora. Priamy x = -4 A x = -1 toto sú hranice, v rámci ktorých sa bude počítať určitý integrál. Princíp riešenia problému nájdenia oblasti obrazca sa takmer úplne zhoduje s príkladom číslo 1. Jediný rozdiel je v tom, že daná funkcia nie je kladná a je tiež spojitá na intervale [-4; -1] . Čo tým myslíš nie pozitívne? Ako vidno z obrázku, obrazec, ktorý leží v rámci daného x, má výlučne „záporné“ súradnice, čo musíme vidieť a zapamätať si pri riešení úlohy. Hľadáme oblasť obrázku pomocou vzorca Newton-Leibniz, iba so znamienkom mínus na začiatku.

Článok nie je dokončený.



Podobné články