Ako určiť priamu a nepriamu úmernosť. Lineárna funkcia

01.10.2019

Trikhleb Daniil, žiak 7. ročníka

oboznámenie sa s priamou úmernosťou a koeficientom priamej úmernosti (zavedenie pojmu uhlový koeficient“);

vytvorenie grafu priamej úmernosti;

zohľadnenie relatívnej polohy grafov priamej úmernosti a lineárnych funkcií s identickými uhlovými koeficientmi.

Stiahnuť ▼:

Náhľad:

Ak chcete použiť ukážky prezentácií, vytvorte si účet Google a prihláste sa doň: https://accounts.google.com


Popisy snímok:

Priama úmernosť a jej graf

Aký je argument a hodnota funkcie? Ktorá premenná sa nazýva nezávislá alebo závislá? čo je funkcia? PREHĽAD Čo je definičný obor funkcie?

Metódy určenia funkcie. Analytické (pomocou vzorca) Grafické (pomocou grafu) Tabuľkové (pomocou tabuľky)

Graf funkcie je množina všetkých bodov súradnicovej roviny, ktorých úsečky sa rovnajú hodnotám argumentu a ordináty sú zodpovedajúce hodnoty funkcie. ROZVRH FUNKCIÍ

1) 2) 3) 4) 5) 6) 7) 8) 9)

DOPLŇTE ÚLOHU Zostrojte graf funkcie y = 2 x +1, kde 0 ≤ x ≤ 4. Urobte si stôl. Pomocou grafu nájdite hodnotu funkcie pri x=2,5. Pri akej hodnote argumentu sa funkčná hodnota rovná 8?

Definícia Priama úmernosť je funkcia, ktorá môže byť špecifikovaná vzorcom v tvare y = k x, kde x je nezávislá premenná, k je nenulové číslo. (k-koeficient priamej úmernosti) Priama úmernosť

8 Graf priamej úmernosti - priamka prechádzajúca počiatkom súradníc (bod O(0,0)) Na zostrojenie grafu funkcie y= kx stačia dva body, z ktorých jeden je O (0,0) Pre k > 0 je graf umiestnený v súradnicových štvrtiach I a III. Pri k

Grafy funkcií priamej úmernosti y x k>0 k>0 k

Úloha Určte, ktorý z grafov zobrazuje funkciu priamej úmernosti.

Úloha Určte, ktorý funkčný graf je znázornený na obrázku. Vyberte si vzorec z troch ponúkaných.

Ústna práca. Môže byť graf funkcie daný vzorcom y = k x, kde k

Určte, ktorý z bodov A(6,-2), B(-2,-10), C(1,-1), E(0,0) patrí do grafu priamej úmernosti daného vzorcom y = 5x 1) A( 6;-2) -2 = 5  6 - 2 = 30 - nesprávne. Bod A nepatrí do grafu funkcie y=5x. 2) B(-2;-10) -10 = 5  (-2) -10 = -10 - správne. Bod B patrí do grafu funkcie y=5x. 3) C(1;-1) -1 = 5  1 -1 = 5 - nesprávne Bod C nepatrí do grafu funkcie y=5x. 4) E (0;0) 0 = 5  0 0 = 0 - pravda. Bod E patrí do grafu funkcie y=5x

TEST 1 možnosť 2 možnosť č. Ktoré z funkcií daných vzorcom sú priamo úmerné? A. y = 5 x B. y = x 2/8 C. y = 7 x (x-1) D. y = x+1 A. y = 3x 2 +5 B. y = 8/x C. y = 7 (x + 9) D. y = 10x

č. 2. Napíšte počty riadkov y = kx, kde k > 0 1 možnosť k

č. 3. Určte, ktorý z bodov patrí do grafu priamej úmernosti, daný vzorcom Y = -1 /3 X A (6 -2), B (-2 -10) 1 možnosť C (1, -1), E (0,0 ) Možnosť 2

y =5x y =10x III A VI a IV E 1 2 3 1 2 3 č Správna odpoveď Správna odpoveď č.

Splňte úlohu: Ukážte schematicky, ako sa nachádza graf funkcie danej vzorcom: y =1,7 x y =-3,1 x y=0,9 x y=-2,3 x

ÚLOHA Z nasledujúcich grafov vyberte iba grafy priamej úmernosti.

1) 2) 3) 4) 5) 6) 7) 8) 9)

Funkcie y = 2x + 3 2. y = 6/ x 3. y = 2x 4. y = - 1,5x 5. y = - 5/ x 6. y = 5x 7. y = 2x – 5 8. y = - 0,3x 9. y = 3/ x 10. y = - x /3 + 1 Vyberte funkcie tvaru y = k x (priama úmernosť) a zapíšte ich

Funkcie priamej úmernosti Y = 2x Y = -1,5x Y = 5x Y = -0,3x y x

y Lineárne funkcie, ktoré nie sú funkciami priamej úmernosti 1) y = 2x + 3 2) y = 2x – 5 x -6 -4 -2 0 2 4 6 6 3 -3 -6 y = 2x + 3 y = 2x - 5

Domáca úloha: odsek 15 s. 65-67, č. 307; č. 308.

Zopakujme si to ešte raz. Aké nové veci ste sa naučili? čo ste sa naučili? Čo bolo pre vás obzvlášť ťažké?

Lekcia sa mi páčila a téma je pochopená: Lekcia sa mi páčila, ale stále nerozumiem všetkému: lekcia sa mi nepáčila a téma nie je jasná.

I. Priamo úmerné množstvá.

Nechajte hodnotu r závisí od veľkosti X. Ak pri zvyšovaní X niekoľkonásobne väčšie pri zvyšuje o rovnakú hodnotu, potom také hodnoty X A pri sa nazývajú priamo úmerné.

Príklady.

1 . Množstvo nakupovaného tovaru a kúpna cena (pri pevnej cene za jednu jednotku tovaru - 1 kus alebo 1 kg atď.) Koľkokrát viac tovaru sa nakúpilo, toľkokrát viac zaplatilo.

2 . Prejdená vzdialenosť a čas strávený na nej (pri konštantnej rýchlosti). Koľkokrát je cesta dlhšia, toľkokrát viac času zaberie jej dokončenie.

3 . Objem telesa a jeho hmotnosť. ( Ak je jeden melón 2-krát väčší ako druhý, jeho hmotnosť bude 2-krát väčšia)

II. Vlastnosť priamej úmernosti veličín.

Ak sú dve veličiny priamo úmerné, potom sa pomer dvoch ľubovoľne prijatých hodnôt prvej veličiny rovná pomeru dvoch zodpovedajúcich hodnôt druhej veličiny.

Úloha 1. Na malinový džem sme vzali 12 kg maliny a 8 kg Sahara. Koľko cukru budete potrebovať, ak si ho vezmete? 9 kg maliny?

Riešenie.

Uvažujeme takto: nech je to potrebné x kg cukor pre 9 kg maliny Hmotnosť malín a hmotnosť cukru sú priamo úmerné množstvá: koľkokrát menej malín, toľkokrát menej cukru je potrebných. Preto pomer prijatých malín (podľa hmotnosti) ( 12:9 ) sa bude rovnať pomeru prijatého cukru ( 8:x). Dostaneme pomer:

12: 9=8: X;

x=9 · 8: 12;

x=6. odpoveď: na 9 kg maliny treba brať 6 kg Sahara.

Riešenie problému Dalo by sa to urobiť takto:

Nechaj tak 9 kg maliny treba brať x kg Sahara.

(Šípky na obrázku sú nasmerované jedným smerom a nahor alebo nadol nezáleží. Význam: koľkokrát číslo 12 ďalšie číslo 9 , rovnaký počet krát 8 ďalšie číslo X, t.j. je tu priamy vzťah).

odpoveď: na 9 kg Potrebujem si zobrať maliny 6 kg Sahara.

Úloha 2. Auto pre 3 hodiny prešla vzdialenosť 264 km. Ako dlho mu bude trvať cesta? 440 km, ak jazdí rovnakou rýchlosťou?

Riešenie.

Nechajte pre x hodín auto prejde vzdialenosť 440 km.

odpoveď: auto prejde 440 km za 5 hodín.

Úloha 3. Voda tečie z potrubia do bazéna. vzadu 2 hodiny ona napĺňa 1/5 bazén V ktorej časti bazéna je naplnená voda 5 hodín?

Riešenie.

Na otázku úlohy odpovedáme: pre 5 hodín bude naplnená 1/xčasť bazéna. (Celý bazén sa berie ako jeden celok).

>>Matematika: Priama úmernosť a jej graf

Priama úmernosť a jej graf

Medzi lineárnymi funkciami y = kx + m sa rozlišuje najmä prípad, keď m = 0; v tomto prípade má tvar y = kx a nazýva sa priama úmernosť. Tento názov sa vysvetľuje skutočnosťou, že dve veličiny y a x sa nazývajú priamo úmerné, ak sa ich pomer rovná špecifickému
iné číslo ako nula. Tu sa toto číslo k nazýva koeficient proporcionality.

Mnoho reálnych situácií je modelovaných pomocou priamej úmernosti.

Napríklad dráha s a čas t pri konštantnej rýchlosti 20 km/h súvisia závislosťou s = 20t; ide o priamu úmernosť, pričom k = 20.

Ďalší príklad:

náklady y a počet x bochníkov chleba za cenu 5 rubľov. pre bochník sú spojené závislosťou y ​​= 5x; ide o priamu úmernosť, kde k = 5.

Dôkaz. Realizovať ho budeme v dvoch etapách.
1. y = kx je špeciálny prípad lineárnej funkcie a graf lineárnej funkcie je priamka; označme to I.
2. Dvojica x = 0, y = 0 spĺňa rovnicu y - kx, a preto bod (0; 0) patrí do grafu rovnice y = kx, teda priamka I.

V dôsledku toho priamka I prechádza počiatkom. Veta bola dokázaná.

Musíte vedieť prejsť nielen z analytického modelu y = kx do geometrického (graf priamej úmernosti), ale aj z geometrického modelov na analytické. Uvažujme napríklad priamku na rovine súradníc xOy znázornenú na obrázku 50. Je to graf priamej úmernosti, stačí nájsť hodnotu koeficientu k. Od y potom stačí zobrať ľubovoľný bod na priamke a nájsť pomer súradnice tohto bodu k jeho os. Priamka prechádza bodom P(3; 6) a pre tento bod platí: To znamená k = 2, a preto daná priamka slúži ako graf priamej úmernosti y = 2x.

V dôsledku toho sa koeficient k v zápise lineárnej funkcie y = kx + m nazýva aj koeficient sklonu. Ak k>0, potom priamka y = kx + m zviera ostrý uhol s kladným smerom osi x (obr. 49, a), a ak k< О, - тупой угол (рис. 49, б).

Kalendár-tematické plánovanie v matematike, video v matematike online, Matematika v škole na stiahnutie

A. V. Pogorelov, Geometria pre ročníky 7-11, Učebnica pre vzdelávacie inštitúcie

Obsah lekcie poznámky k lekcii podporná rámcová lekcia prezentácia akceleračné metódy interaktívne technológie Prax úlohy a cvičenia autotest workshopy, školenia, prípady, questy domáce úlohy diskusia otázky rečnícke otázky študentov Ilustrácie audio, videoklipy a multimédiá fotografie, obrázky, grafika, tabuľky, diagramy, humor, anekdoty, vtipy, komiksy, podobenstvá, výroky, krížovky, citáty Doplnky abstraktyčlánky triky pre zvedavcov jasličky učebnice základný a doplnkový slovník pojmov iné Zdokonaľovanie učebníc a vyučovacích hodínoprava chýb v učebnici aktualizácia fragmentu v učebnici, prvky inovácie v lekcii, nahradenie zastaraných vedomostí novými Len pre učiteľov perfektné lekcie kalendárny plán na rok, metodické odporúčania, diskusné programy Integrované lekcie

Priama a nepriama úmernosť

Ak t je čas pohybu chodca (v hodinách), s je prejdená vzdialenosť (v kilometroch) a pohybuje sa rovnomerne rýchlosťou 4 km/h, potom vzťah medzi týmito veličinami možno vyjadriť vzorcom s = 4t. Keďže každej hodnote t zodpovedá jedna hodnota s, môžeme povedať, že funkcia je definovaná pomocou vzorca s = 4t. Nazýva sa priama úmernosť a je definovaná nasledovne.

Definícia. Priama úmernosť je funkcia, ktorú je možné špecifikovať pomocou vzorca y=kx, kde k je nenulové reálne číslo.

Názov funkcie y = k x je spôsobený tým, že vo vzorci y = k x sú premenné x a y, ktoré môžu byť hodnotami veličín. A ak sa pomer dvoch veličín rovná nejakému číslu odlišnému od nuly, volajú sa priamo úmerné . V našom prípade = k (k≠0). Toto číslo sa volá koeficient proporcionality.

Funkcia y = k x je matematickým modelom mnohých reálnych situácií uvažovaných už v počiatočnom kurze matematiky. Jeden z nich je opísaný vyššie. Ďalší príklad: ak jedno vrece múky obsahuje 2 kg a takýchto vriec bolo nakúpených x, potom celú hmotnosť nakúpenej múky (označíme y) možno znázorniť vzorcom y = 2x, t.j. vzťah medzi počtom vriec a celkovou hmotnosťou nakupovanej múky je priamo úmerný koeficientu k=2.

Pripomeňme si niektoré vlastnosti priamej úmernosti, ktoré sa študujú v školskom kurze matematiky.

1. Definičný obor funkcie y = k x a rozsah jej hodnôt je množina reálnych čísel.

2. Graf priamej úmernosti je priamka prechádzajúca počiatkom. Na zostrojenie grafu priamej úmernosti teda stačí nájsť iba jeden bod, ktorý mu patrí a nezhoduje sa s počiatkom súradníc, a potom cez tento bod a počiatok súradníc nakresliť priamku.

Napríklad na zostrojenie grafu funkcie y = 2x stačí mať bod so súradnicami (1, 2), cez ktorý potom nakresliť priamku a počiatok súradníc (obr. 7).

3. Pre k > 0 funkcia y = khx narastá v celom definičnom obore; pri k< 0 - убывает на всей области определения.

4. Ak je funkcia f priama úmernosť a (x 1, y 1), (x 2, y 2) sú dvojice zodpovedajúcich hodnôt premenných x a y a x 2 ≠0 potom.

V skutočnosti, ak je funkcia f priama úmernosť, potom môže byť daná vzorcom y = khx a potom y 1 = kh 1, y 2 = kh 2. Pretože pri x 2 ≠0 a k≠0, potom y 2 ≠0. Preto a to znamená.

Ak sú hodnoty premenných x a y kladné reálne čísla, potom možno dokázanú vlastnosť priamej úmernosti formulovať takto: pri niekoľkonásobnom zvýšení (znížení) hodnoty premennej x sa o rovnakú hodnotu zvýši (zníži) zodpovedajúca hodnota premennej y.

Táto vlastnosť je vlastná iba priamej úmernosti a možno ju použiť pri riešení slovných úloh, v ktorých sa uvažuje o priamo úmerných veličinách.

Úloha 1. Za 8 hodín sústružník vyrobil 16 dielov. Koľko hodín bude trvať sústružníkovi, kým vyrobí 48 dielov, ak bude pracovať s rovnakou produktivitou?

Riešenie. Problém uvažuje s nasledujúcimi veličinami: pracovný čas sústružníka, počet súčiastok, ktoré vyrobí a produktivita (t.j. počet súčiastok vyrobených sústružníkom za 1 hodinu), pričom posledná hodnota je konštantná a ostatné dve preberajú rôzne hodnoty. Navyše, počet vyrobených dielov a pracovný čas sú priamo úmerné veličiny, keďže ich pomer sa rovná určitému číslu, ktoré sa nerovná nule, konkrétne počtu dielov vyrobených sústružníkom za 1 hodinu. vyrobených dielov sa označí písmenom y, čas práce je x a produktivita je k, potom dostaneme, že = k alebo y = khx, t.j. Matematickým modelom situácie prezentovanej v úlohe je priama úmernosť.

Problém je možné vyriešiť dvoma aritmetickými spôsobmi:

1. spôsob: 2. spôsob:

1) 16:8 = 2 (deti) 1) 48:16 = 3 (krát)

2) 48:2 = 24 (h) 2) 8-3 = 24 (h)

Pri riešení úlohy prvým spôsobom sme najskôr našli koeficient úmernosti k, ktorý sa rovná 2, a potom, keď vieme, že y = 2x, našli sme hodnotu x za predpokladu, že y = 48.

Pri riešení úlohy druhým spôsobom sme použili vlastnosť priamej úmernosti: koľkokrát sa zvýši počet dielov vyrobených sústružníkom, o rovnakú hodnotu sa zvýši aj čas na ich výrobu.

Prejdime teraz k funkcii nazývanej inverzná úmernosť.

Ak t je čas pohybu chodca (v hodinách), v je jeho rýchlosť (v km/h) a prešiel 12 km, potom vzťah medzi týmito veličinami možno vyjadriť vzorcom v∙t = 20 alebo v = .

Keďže každá hodnota t (t ≠ 0) zodpovedá jedinej hodnote rýchlosti v, môžeme povedať, že funkcia je špecifikovaná pomocou vzorca v =. Nazýva sa inverzná úmernosť a je definovaná nasledovne.

Definícia. Inverzná úmernosť je funkcia, ktorú je možné špecifikovať pomocou vzorca y =, kde k je reálne číslo, ktoré sa nerovná nule.

Názov tejto funkcie je spôsobený tým, že y = existujú premenné x a y, ktoré môžu byť hodnotami veličín. A ak sa súčin dvoch veličín rovná nejakému číslu odlišnému od nuly, potom sa nazývajú nepriamo úmerné. V našom prípade xy = k(k ≠0). Toto číslo k sa nazýva koeficient proporcionality.

Funkcia y = je matematický model mnohých reálnych situácií uvažovaných už v počiatočnom kurze matematiky. Jeden z nich je opísaný pred definíciou nepriamej úmernosti. Ďalší príklad: ak ste kúpili 12 kg múky a dali ste to do l:y kg plechoviek, potom vzťah medzi týmito množstvami možno znázorniť ako x-y = 12, t.j. je nepriamo úmerný koeficientu k=12.

Pripomeňme si niektoré vlastnosti nepriamej úmernosti, známe z kurzu školskej matematiky.

1. Definícia domény funkcie y = a rozsah jeho hodnôt x je množina reálnych čísel iných ako nula.

2. Grafom nepriamej úmernosti je hyperbola.

3. Pre k > 0 sa vetvy hyperboly nachádzajú v 1. a 3. štvrtine a funkcia y = klesá v celej doméne definície x (obr. 8).

Ryža. 8 Obr.9

Pri k< 0 ветви гиперболы расположены во 2-й и 4-й четвертях и функция y = sa zvyšuje v celej oblasti definície x (obr. 9).

4. Ak je funkcia f nepriamo úmerná a (x 1, y 1), (x 2, y 2) sú dvojice zodpovedajúcich hodnôt premenných x a y, potom.

V skutočnosti, ak je funkcia f nepriamo úmerná, potom môže byť daná vzorcom y = ,a potom . Pretože x 1 ≠0, x 2 ≠0, x 3 ≠0, potom

Ak sú hodnoty premenných x a y kladné reálne čísla, potom možno túto vlastnosť nepriamej úmernosti formulovať takto: s niekoľkonásobným zvýšením (znížením) hodnoty premennej x, zodpovedajúca hodnota premennej y klesá (rastie) o rovnakú hodnotu.

Táto vlastnosť je vlastná iba nepriamej úmernosti a možno ju použiť pri riešení slovných úloh, v ktorých sa uvažuje s nepriamo úmernými veličinami.

Úloha 2. Cyklista, ktorý sa pohybuje rýchlosťou 10 km/h, prekonal vzdialenosť z bodu A do bodu B za 6 hodín Koľko času strávi cyklista na ceste späť, ak pôjde rýchlosťou 20 km/h?

Riešenie. Úloha uvažuje s nasledujúcimi veličinami: rýchlosť cyklistu, čas pohybu a vzdialenosť z A do B, pričom posledná veličina je konštantná, zatiaľ čo ostatné dve nadobúdajú rôzne hodnoty. Navyše rýchlosť a čas pohybu sú nepriamo úmerné veličiny, keďže ich súčin sa rovná určitému číslu, konkrétne prejdenej vzdialenosti. Ak čas pohybu cyklistu označíme písmenom y, rýchlosť x a vzdialenosť AB k, potom dostaneme, že xy = k alebo y =, t.j. Matematický model situácie prezentovaný v úlohe je nepriamo úmerný.

Existujú dva spôsoby riešenia problému:

1. spôsob: 2. spôsob:

1) 10-6 = 60 (km) 1) 20:10 = 2 (krát)

2) 60:20 = 3(4) 2) 6:2 = 3(h)

Pri riešení úlohy prvým spôsobom sme najprv našli koeficient úmernosti k, ktorý sa rovná 60, a potom, keď vieme, že y =, našli sme hodnotu y za predpokladu, že x = 20.

Pri riešení úlohy druhým spôsobom sme využili vlastnosť nepriamej úmernosti: koľkokrát sa rýchlosť pohybu zvýši, o rovnaké číslo sa zníži čas na prejdenie rovnakej vzdialenosti.

Všimnite si, že pri riešení konkrétnych problémov s nepriamo úmernými alebo priamo úmernými veličinami sú na x a y uvalené určité obmedzenia; najmä ich možno považovať nie na celú množinu reálnych čísel, ale na jej podmnožiny.

Problém 3. Lena kúpila x ceruziek a Katya kúpila 2-krát viac. Označte počet ceruziek, ktoré Katya kúpila, y, vyjadrite y x a vytvorte graf zistenej korešpondencie za predpokladu, že x≤5. Je táto korešpondencia funkciou? Aká je jeho doména definície a rozsahu hodnôt?

Riešenie. Káťa kúpila = 2 ceruzky. Pri vykresľovaní funkcie y=2x je potrebné vziať do úvahy, že premenná x označuje počet ceruziek a x≤5, čo znamená, že môže nadobúdať iba hodnoty 0, 1, 2, 3, 4, 5. Toto bude doména definície tejto funkcie. Na získanie rozsahu hodnôt tejto funkcie je potrebné vynásobiť každú hodnotu x z rozsahu definície číslom 2, t.j. toto bude sada (0, 2, 4, 6, 8, 10). Preto grafom funkcie y = 2x s definičným oborom (0, 1, 2, 3, 4, 5) bude množina bodov znázornená na obrázku 10. Všetky tieto body patria do priamky y = 2x .

§ 129. Predbežné objasnenia.

Osoba sa neustále zaoberá širokou škálou veličín. Zamestnanec a robotník sa snažia dostať do práce do určitého času, chodec sa ponáhľa najkratšou cestou na určité miesto, topič parou sa obáva, že teplota v kotle pomaly stúpa, obchodný manažér robí plány na zníženie výrobných nákladov atď.

Takýchto príkladov by sa dalo uviesť ľubovoľné množstvo. Čas, vzdialenosť, teplota, náklady – to všetko sú rôzne veličiny. V prvej a druhej časti tejto knihy sme sa oboznámili s niektorými obzvlášť bežnými veličinami: plocha, objem, hmotnosť. S mnohými veličinami sa stretávame pri štúdiu fyziky a iných vied.

Predstavte si, že cestujete vo vlaku. Z času na čas sa pozriete na hodinky a všimnete si, ako dlho ste na ceste. Hovoríte napríklad, že od odchodu vášho vlaku uplynulo 2, 3, 5, 10, 15 hodín atď. Tieto čísla predstavujú rôzne časové obdobia; nazývajú sa hodnotami tejto veličiny (čas). Alebo sa pozriete z okna a sledujete stĺpiky na ceste, aby ste videli vzdialenosť, ktorú váš vlak prejde. Pred vami blikajú čísla 110, 111, 112, 113, 114 km. Tieto čísla predstavujú rôzne vzdialenosti, ktoré vlak prešiel od svojho východiskového bodu. Nazývajú sa tiež hodnoty, tentoraz inej veľkosti (dráha alebo vzdialenosť medzi dvoma bodmi). Jedna veličina, napríklad čas, vzdialenosť, teplota, teda môže nabrať toľko rôzne významy.

Upozorňujeme, že človek takmer nikdy neuvažuje iba o jednej veličine, ale vždy ju spája s nejakými inými veličinami. Musí sa súčasne zaoberať dvomi, tromi alebo viacerými veličinami. Predstavte si, že potrebujete prísť do školy o deviatej. Pozriete sa na hodinky a uvidíte, že máte 20 minút. Potom rýchlo vymyslíte, či máte ísť električkou, alebo či môžete ísť do školy pešo. Po premýšľaní sa rozhodnete ísť pešo. Všimnite si, že kým ste premýšľali, riešili ste nejaký problém. Táto úloha sa stala jednoduchou a známou, pretože takéto problémy riešite každý deň. V ňom ste rýchlo porovnali niekoľko veličín. Boli ste to vy, kto sa pozrel na hodiny, čo znamená, že ste vzali do úvahy čas, potom ste si v duchu predstavili vzdialenosť z vášho domova do školy; Nakoniec ste porovnali dve hodnoty: rýchlosť vášho kroku a rýchlosť električky a dospeli ste k záveru, že za daný čas (20 minút) stihnete prejsť. Z tohto jednoduchého príkladu môžete vidieť, že v našej praxi sú niektoré veličiny vzájomne prepojené, teda navzájom závislé

Dvanásta kapitola hovorila o vzťahu homogénnych veličín. Napríklad, ak je jeden segment 12 m a druhý 4 m, potom bude pomer týchto segmentov 12: 4.

Povedali sme, že ide o pomer dvoch homogénnych veličín. Ďalší spôsob, ako to povedať, je, že ide o pomer dvoch čísel jedno meno.

Teraz, keď sme sa viac oboznámili s veličinami a zaviedli sme pojem hodnoty veličiny, môžeme definíciu pomeru vyjadriť novým spôsobom. V skutočnosti, keď sme uvažovali o dvoch segmentoch 12 m a 4 m, hovorili sme o jednej hodnote - dĺžke a 12 m a 4 m boli iba dve rôzne hodnoty tejto hodnoty.

Preto v budúcnosti, keď začneme hovoriť o pomeroch, budeme uvažovať o dvoch hodnotách jednej veličiny a pomer jednej hodnoty veličiny k inej hodnote tej istej veličiny sa bude nazývať kvocientom delenia prvej hodnoty. druhým.

§ 130. Hodnoty sú priamo úmerné.

Uvažujme o probléme, ktorého stav zahŕňa dve veličiny: vzdialenosť a čas.

Úloha 1. Priamočiaro a rovnomerne sa pohybujúce teleso prejde každú sekundu 12 cm Určte vzdialenosť, ktorú teleso prejde za 2, 3, 4, ..., 10 sekúnd.

Vytvorme tabuľku, pomocou ktorej možno sledovať zmeny v čase a vzdialenosti.

Tabuľka nám dáva možnosť porovnať tieto dva rady hodnôt. Vidíme z toho, že keď sa hodnoty prvej veličiny (času) postupne zväčšia 2, 3,..., 10-krát, potom sa aj hodnoty druhej veličiny (vzdialenosti) zvýšia o 2, 3, ..., 10 krát. Keď sa teda hodnoty jednej veličiny zvýšia niekoľkokrát, hodnoty inej veličiny sa zvýšia o rovnakú hodnotu, a keď sa hodnoty jednej veličiny znížia niekoľkokrát, hodnoty inej veličiny sa znížia o rovnaké číslo.

Uvažujme teraz o probléme, ktorý zahŕňa dve takéto veličiny: množstvo hmoty a jej cenu.

Úloha 2. 15 m látky stojí 120 rubľov. Vypočítajte cenu tejto tkaniny pre niekoľko ďalších množstiev metrov uvedených v tabuľke.

Pomocou tejto tabuľky môžeme sledovať, ako sa cena produktu postupne zvyšuje v závislosti od nárastu jeho množstva. Napriek tomu, že tento problém sa týka úplne iných veličín (v prvom probléme - čas a vzdialenosť, a tu - množstvo tovaru a jeho hodnota), napriek tomu možno nájsť v správaní týchto veličín veľké podobnosti.

V hornom riadku tabuľky sú totiž čísla označujúce počet metrov látky, pod každým je číslo vyjadrujúce cenu príslušného množstva tovaru. Aj rýchly pohľad na túto tabuľku ukazuje, že čísla v hornom aj dolnom riadku sa zvyšujú; pri bližšom skúmaní tabuľky a pri porovnaní jednotlivých stĺpcov sa zistí, že vo všetkých prípadoch sa hodnoty druhej veličiny zväčšia toľkokrát, koľkokrát sa zvýšia hodnoty prvého, t.j. prvé množstvo sa zvýši povedzme 10-krát, potom sa hodnota druhého množstva tiež zvýši 10-krát.

Ak sa pozrieme na tabuľku sprava doľava, zistíme, že uvedené hodnoty veličín sa znížia rovnako veľakrát. V tomto zmysle existuje bezpodmienečná podobnosť medzi prvou a druhou úlohou.

Dvojice veličín, s ktorými sme sa stretli v prvej a druhej úlohe, sa nazývajú priamo úmerné.

Ak teda dve veličiny sú vo vzájomnom vzťahu tak, že keď sa hodnota jednej z nich niekoľkokrát zvýši (zníži), hodnota druhej sa zvýši (zníži) o rovnakú hodnotu, potom sa takéto veličiny nazývajú priamo úmerné. .

O takýchto množstvách sa tiež hovorí, že spolu súvisia priamo úmerným vzťahom.

V prírode a v živote okolo nás sa nachádza veľa podobných množstiev. Tu je niekoľko príkladov:

1. Čas práca (deň, dva dni, tri dni atď.) a zárobky, dostal počas tejto doby s dennou mzdou.

2. Objem akýkoľvek predmet vyrobený z homogénneho materiálu a hmotnosť táto položka.

§ 131. Majetok priamo úmerných veličín.

Zoberme si problém, ktorý zahŕňa nasledujúce dve veličiny: pracovný čas a zárobok. Ak je denný zárobok 20 rubľov, potom zárobok za 2 dni bude 40 rubľov atď. Najvhodnejšie je vytvoriť tabuľku, v ktorej bude určitý počet dní zodpovedať určitému zárobku.

Pri pohľade na túto tabuľku vidíme, že obe veličiny nadobudli 10 rôznych hodnôt. Každá hodnota prvej hodnoty zodpovedá určitej hodnote druhej hodnoty, napríklad 2 dni zodpovedajú 40 rubľov; 5 dní zodpovedá 100 rubľov. V tabuľke sú tieto čísla zapísané pod sebou.

Už vieme, že ak sú dve veličiny priamo úmerné, tak každá z nich sa v procese svojej zmeny zväčší toľkokrát, koľko sa zväčší druhá. Okamžite z toho vyplýva: ak vezmeme pomer akýchkoľvek dvoch hodnôt prvého množstva, potom sa bude rovnať pomeru dvoch zodpovedajúcich hodnôt druhého množstva. Naozaj:

Prečo sa to deje? Ale pretože tieto hodnoty sú priamo úmerné, t.j. keď sa jedna z nich (čas) zvýšila 3-krát, potom sa druhá (zárobok) zvýšila 3-krát.

Dospeli sme teda k nasledovnému záveru: ak vezmeme dve hodnoty prvej veličiny a vydelíme ich jedna druhou a potom vydelíme jednou zodpovedajúce hodnoty druhej veličiny, potom v oboch prípadoch dostaneme rovnaké číslo, teda rovnaký vzťah. To znamená, že dva vzťahy, ktoré sme napísali vyššie, môžeme spojiť znakom rovnosti, t.j.

Niet pochýb o tom, že keby sme nebrali tieto vzťahy, ale iné, a nie v tomto poradí, ale v opačnom poradí, získali by sme aj rovnosť vzťahov. V skutočnosti zvážime hodnoty našich množstiev zľava doprava a vezmeme tretiu a deviatu hodnotu:

60:180 = 1 / 3 .

Môžeme teda napísať:

To vedie k nasledujúcemu záveru: ak sú dve veličiny priamo úmerné, potom sa pomer dvoch ľubovoľne prijatých hodnôt prvej veličiny rovná pomeru dvoch zodpovedajúcich hodnôt druhej veličiny.

§ 132. Vzorec priamej úmernosti.

Urobme tabuľku nákladov na rôzne množstvá sladkostí, ak 1 kg z nich stojí 10,4 rubľov.

Teraz to urobme takto. Vezmite ľubovoľné číslo v druhom riadku a vydeľte ho zodpovedajúcim číslom v prvom riadku. Napríklad:

Vidíte, že v kvociente sa získava stále to isté číslo. V dôsledku toho je pre danú dvojicu priamo úmerných veličín kvocient delenia ľubovoľnej hodnoty jednej veličiny zodpovedajúcou hodnotou inej veličiny konštantné číslo (t. j. nemení sa). V našom príklade je tento kvocient 10,4. Toto konštantné číslo sa nazýva faktor proporcionality. V tomto prípade vyjadruje cenu mernej jednotky, teda jedného kilogramu tovaru.

Ako nájsť alebo vypočítať koeficient proporcionality? Aby ste to dosiahli, musíte vziať ľubovoľnú hodnotu jednej veličiny a vydeliť ju zodpovedajúcou hodnotou druhej.

Označme túto ľubovoľnú hodnotu jednej veličiny písmenom pri , a zodpovedajúca hodnota inej veličiny - písm X , potom koeficient proporcionality (označujeme ho TO) podľa delenia nájdeme:

V tejto rovnosti pri - deliteľné, X - deliteľ a TO- podiel, a keďže podľa vlastnosti delenia sa dividenda rovná deliteľovi vynásobenému podielom, môžeme napísať:

y = K X

Výsledná rovnosť je tzv vzorec priamej úmernosti. Pomocou tohto vzorca môžeme vypočítať ľubovoľný počet hodnôt jednej z priamo úmerných veličín, ak poznáme zodpovedajúce hodnoty druhej veličiny a koeficient úmernosti.

Príklad. Z fyziky vieme, že hmotnosť R akéhokoľvek telesa sa rovná jeho špecifickej hmotnosti d , vynásobený objemom tohto telesa V, t.j. R = d V.

Zoberme si päť železných tyčí rôznych objemov; Keď poznáme špecifickú hmotnosť železa (7.8), môžeme vypočítať hmotnosti týchto ingotov pomocou vzorca:

R = 7,8 V.

Porovnanie tohto vzorca so vzorcom pri = TO X , to vidíme y = R, x = V a koeficient proporcionality TO= 7,8. Vzorec je rovnaký, iba písmená sú iné.

Pomocou tohto vzorca urobme tabuľku: objem prvého polotovaru nech sa rovná 8 metrov kubickým. cm, potom je jeho hmotnosť 7,8 8 = 62,4 (g). Objem 2. prírezu je 27 metrov kubických. cm.Jeho hmotnosť je 7,8 27 = 210,6 (g). Tabuľka bude vyzerať takto:

Pomocou vzorca vypočítajte čísla, ktoré v tejto tabuľke chýbajú R= d V.

§ 133. Iné spôsoby riešenia úloh s priamo úmernými veličinami.

V predchádzajúcom odseku sme riešili problém, ktorého podmienka zahŕňala priamo úmerné veličiny. Na tento účel sme najprv odvodili vzorec priamej úmernosti a potom sme tento vzorec použili. Teraz si ukážeme ďalšie dva spôsoby riešenia podobných problémov.

Vytvorme úlohu pomocou číselných údajov uvedených v tabuľke v predchádzajúcom odseku.

Úloha. Blank s objemom 8 metrov kubických. cm váži 62,4 g Koľko bude vážiť prírez s objemom 64 metrov kubických? cm?

Riešenie. Hmotnosť železa, ako je známe, je úmerná jeho objemu. Ak 8 cu. cm váži 62,4 g, potom 1 cu. cm bude vážiť 8x menej, t.j.

62,4:8 = 7,8 (g).

Blank s objemom 64 metrov kubických. cm bude vážiť 64-krát viac ako polotovar s objemom 1 kubický meter. cm, t.j.

7,8 64 = 499,2 (g).

Náš problém sme vyriešili zredukovaním na jednotu. Význam tohto názvu je odôvodnený tým, že na jeho vyriešenie sme museli v prvej otázke nájsť hmotnosť jednotky objemu.

2. Spôsob proporcie. Vyriešme rovnaký problém pomocou proporčnej metódy.

Keďže hmotnosť železa a jeho objem sú priamo úmerné veličiny, pomer dvoch hodnôt jednej veličiny (objemu) sa rovná pomeru dvoch zodpovedajúcich hodnôt inej veličiny (hmotnosti), t.j.

(list R určili sme neznámu hmotnosť polotovaru). Odtiaľ:

(G).

Problém bol vyriešený metódou proporcií. To znamená, že na jeho vyriešenie bol zostavený pomer z čísel zahrnutých v podmienke.

§ 134. Hodnoty sú nepriamo úmerné.

Zvážte nasledujúci problém: „Päť murárov dokáže položiť tehlové steny domu za 168 dní. Určte, za koľko dní by 10, 8, 6 atď. murárov mohlo dokončiť rovnakú prácu.“

Ak by 5 murárov postavilo steny domu za 168 dní, tak by to (pri rovnakej produktivite práce) 10 murárov zvládlo za polovičný čas, keďže v priemere 10 ľudí urobí dvakrát toľko práce ako 5 ľudí.

Zostavme si tabuľku, podľa ktorej by sme mohli sledovať zmeny v počte pracovníkov a pracovnom čase.

Ak chcete napríklad zistiť, koľko dní to trvá 6 pracovníkom, musíte najprv vypočítať, koľko dní to trvá jednému pracovníkovi (168 5 = 840) a potom, koľko dní to trvá šiestim pracovníkom (840: 6 = 140). Pri pohľade na túto tabuľku vidíme, že obe veličiny nadobudli šesť rôznych hodnôt. Každá hodnota prvej veličiny zodpovedá konkrétnej hodnote; hodnota druhej hodnoty, napríklad 10 zodpovedá 84, číslo 8 zodpovedá číslu 105 atď.

Ak vezmeme do úvahy hodnoty oboch veličín zľava doprava, uvidíme, že hodnoty hornej veličiny sa zvyšujú a hodnoty spodnej veličiny klesajú. Na zvýšenie a zníženie sa vzťahuje nasledujúci zákon: hodnoty počtu pracovníkov sa zvyšujú o rovnaký čas, ako klesajú hodnoty stráveného pracovného času. Túto myšlienku možno vyjadriť ešte jednoduchšie takto: čím viac pracovníkov je zapojených do akejkoľvek úlohy, tým menej času potrebujú na dokončenie určitej úlohy. Dve veličiny, s ktorými sme sa stretli v tomto probléme, sa nazývajú nepriamo úmerné.

Ak teda dve veličiny sú vo vzájomnom vzťahu tak, že keď sa hodnota jednej z nich niekoľkokrát zvýši (zníži), hodnota druhej o rovnakú hodnotu klesne (rastie), potom sa takéto veličiny nazývajú nepriamo úmerné. .

Podobných množstiev je v živote veľa. Uveďme príklady.

1. Ak za 150 rubľov. Ak potrebujete kúpiť niekoľko kilogramov sladkostí, počet sladkostí bude závisieť od ceny jedného kilogramu. Čím vyššia cena, tým menej tovaru si môžete za tieto peniaze kúpiť; to vidno z tabuľky:

Keď sa cena cukríkov niekoľkokrát zvýši, počet kilogramov cukríkov, ktoré sa dajú kúpiť za 150 rubľov, klesá o rovnakú sumu. V tomto prípade sú dve veličiny (váha produktu a jeho cena) nepriamo úmerné.

2. Ak je vzdialenosť medzi dvoma mestami 1 200 km, potom sa dá prejsť v rôznych časoch v závislosti od rýchlosti pohybu. Cestovať sa dá rôznymi spôsobmi: pešo, na koni, na bicykli, na lodi, v aute, vlakom, lietadlom. Čím nižšia je rýchlosť, tým viac času trvá pohyb. Toto je možné vidieť z tabuľky:

S niekoľkonásobným zvýšením rýchlosti sa o rovnakú hodnotu skracuje čas jazdy. To znamená, že za týchto podmienok sú rýchlosť a čas nepriamo úmerné veličiny.

§ 135. Majetok nepriamo úmerných veličín.

Zoberme si druhý príklad, na ktorý sme sa pozreli v predchádzajúcom odseku. Tam sme riešili dve veličiny – rýchlosť a čas. Ak sa pozrieme na tabuľku hodnôt týchto veličín zľava doprava, uvidíme, že hodnoty prvej veličiny (rýchlosti) sa zvyšujú a hodnoty druhej (času) klesajú a rýchlosť sa zvyšuje o rovnakú hodnotu ako čas klesá. Nie je ťažké pochopiť, že ak napíšete pomer niektorých hodnôt jednej veličiny, nebude sa rovnať pomeru zodpovedajúcich hodnôt inej veličiny. V skutočnosti, ak vezmeme pomer štvrtej hodnoty hornej hodnoty k siedmej hodnote (40: 80), nebude sa rovnať pomeru štvrtej a siedmej hodnoty nižšej hodnoty (30: 15). Dá sa to napísať takto:

40:80 sa nerovná 30:15 alebo 40:80 =/=30:15.

Ale ak namiesto jedného z týchto vzťahov vezmeme opak, potom dostaneme rovnosť, t.j. z týchto vzťahov bude možné vytvoriť pomer. Napríklad:

80: 40 = 30: 15,

40: 80 = 15: 30."

Na základe vyššie uvedeného môžeme vyvodiť nasledujúci záver: ak sú dve veličiny nepriamo úmerné, potom sa pomer dvoch ľubovoľne prijatých hodnôt jednej veličiny rovná inverznému pomeru zodpovedajúcich hodnôt inej veličiny.

§ 136. Vzorec obrátenej úmernosti.

Zvážte problém: „Existuje 6 kusov hodvábnej tkaniny rôznych veľkostí a rôznych tried. Všetky kusy stoja rovnako. Jeden kus obsahuje 100 m látky v cene 20 rubľov. na meter Koľko metrov je v každom z ďalších piatich kusov, ak meter látky v týchto kusoch stojí 25, 40, 50, 80, 100 rubľov? Ak chcete tento problém vyriešiť, vytvorte tabuľku:

Musíme vyplniť prázdne bunky v hornom riadku tejto tabuľky. Skúsme najprv určiť, koľko metrov je v druhom kuse. Dá sa to urobiť nasledovne. Z podmienok problému je známe, že náklady na všetky kusy sú rovnaké. Náklady na prvý kus sa dajú ľahko určiť: obsahuje 100 metrov a každý meter stojí 20 rubľov, čo znamená, že prvý kus hodvábu má hodnotu 2 000 rubľov. Keďže druhý kus hodvábu obsahuje rovnaké množstvo rubľov, potom sa delí 2 000 rubľov. za cenu jedného metra, teda 25, nájdeme rozmer druhého kusu: 2 000 : 25 = 80 (m). Rovnakým spôsobom zistíme veľkosť všetkých ostatných kusov. Tabuľka bude vyzerať takto:

Je ľahké vidieť, že medzi počtom metrov a cenou existuje nepriamo úmerný vzťah.

Ak si potrebné výpočty urobíte sami, všimnete si, že zakaždým musíte deliť cenu 1 m číslo 2 000. Naopak, ak teraz začnete násobiť veľkosť kusu v metroch cenou 1 m , vždy dostanete číslo 2 000. Toto a bolo potrebné počkať, keďže každý kus stojí 2 000 rubľov.

Odtiaľ môžeme vyvodiť nasledujúci záver: pre danú dvojicu nepriamo úmerných veličín je súčin akejkoľvek hodnoty jednej veličiny so zodpovedajúcou hodnotou inej veličiny konštantné číslo (t. j. nemení sa).

V našom probléme je tento súčin rovný 2 000. Skontrolujte, či v predchádzajúcom probléme, ktorý hovoril o rýchlosti pohybu a čase potrebnom na presun z jedného mesta do druhého, bolo pre daný problém tiež konštantné číslo (1 200).

Ak vezmeme do úvahy všetko, je ľahké odvodiť vzorec inverznej úmernosti. Označme určitú hodnotu jednej veličiny písmenom X , a zodpovedajúcu hodnotu inej veličiny predstavuje písmeno pri . Potom na základe vyššie uvedeného prac X na pri sa musí rovnať nejakej konštantnej hodnote, ktorú označujeme písmenom TO, t.j.

x y = TO.

V tejto rovnosti X - multiplikát pri - multiplikátor a K- práca. Podľa vlastnosti násobenia sa násobiteľ rovná súčinu deleného násobiteľom. znamená,

Toto je vzorec inverznej proporcionality. Pomocou neho môžeme vypočítať ľubovoľný počet hodnôt jednej z nepriamo úmerných veličín, pričom poznáme hodnoty druhej a konštantné číslo TO.

Zamyslime sa nad ďalším problémom: „Autor jednej eseje vypočítal, že ak je jeho kniha v bežnom formáte, tak bude mať 96 strán, ale ak bude vreckový, tak bude mať 300 strán. Skúšal rôzne možnosti, začal s 96 stranami a potom skončil s 2 500 písmenami na stranu. Potom vzal čísla strán uvedené v tabuľke nižšie a znova vypočítal, koľko písmen bude na stránke.“

Skúsme si vypočítať, koľko písmen bude na strane, ak má kniha 100 strán.

V celej knihe je 240 000 písmen, keďže 2 500 96 = 240 000.

Berúc do úvahy túto skutočnosť, používame vzorec inverznej úmernosti ( pri - počet písmen na stránke, X - počet strán):

V našom príklade TO= 240 000 teda

Na stránke je teda 2 400 písmen.

Podobne sa dozvieme, že ak má kniha 120 strán, počet písmen na strane bude:

Naša tabuľka bude vyzerať takto:

Doplňte zvyšné bunky sami.

§ 137. Iné spôsoby riešenia úloh s nepriamo úmernými veličinami.

V predchádzajúcom odseku sme riešili úlohy, ktorých podmienky zahŕňali nepriamo úmerné veličiny. Najprv sme odvodili vzorec inverznej úmernosti a potom sme tento vzorec použili. Teraz ukážeme dve ďalšie riešenia takýchto problémov.

1. Metóda redukcie na jednotu.

Úloha. 5 sústružníkov zvládne nejakú prácu za 16 dní. Za koľko dní zvládne túto prácu 8 sústružníkov?

Riešenie. Medzi počtom sústružníkov a pracovným časom existuje inverzný vzťah. Ak prácu urobí 5 sústružníkov za 16 dní, tak na to bude jeden človek potrebovať 5x viac času, t.j.

5 sústružníkov dokončí prácu za 16 dní,

1 sústružník to zvládne za 16 5 = 80 dní.

Problém sa pýta, koľko dní bude trvať 8 sústružníkov na dokončenie úlohy. Je zrejmé, že sa s prácou vyrovnajú 8-krát rýchlejšie ako 1 sústružník, t.j

80 : 8 = 10 (dni).

Toto je riešenie problému jeho zredukovaním na jednotu. Tu bolo potrebné v prvom rade určiť čas potrebný na dokončenie práce jedným pracovníkom.

2. Spôsob proporcie. Vyriešme ten istý problém druhým spôsobom.

Keďže medzi počtom robotníkov a pracovným časom je nepriamo úmerný vzťah, môžeme napísať: trvanie práce 5 sústružníkov nový počet sústružníkov (8) trvanie práce 8 sústružníkov predchádzajúci počet sústružníkov (5) Označme napr. požadované trvanie práce listom X a doplňte potrebné čísla do pomeru vyjadreného slovami:

Rovnaký problém je vyriešený metódou proporcií. Aby sme to vyriešili, museli sme vytvoriť pomer z čísel zahrnutých v zadaní problému.

Poznámka. V predchádzajúcich odsekoch sme skúmali otázku priamej a nepriamej úmernosti. Príroda a život nám dáva mnoho príkladov priamej a nepriamo úmernej závislosti veličín. Treba si však uvedomiť, že tieto dva typy závislosti sú len tie najjednoduchšie. Spolu s nimi existujú aj ďalšie, zložitejšie závislosti medzi veličinami. Okrem toho by sme si nemali myslieť, že ak sa akékoľvek dve veličiny zvýšia súčasne, potom medzi nimi nevyhnutne existuje priama úmernosť. To ani zďaleka nie je pravda. Napríklad cestovné na železnici sa zvyšuje v závislosti od vzdialenosti: čím ďalej cestujeme, tým viac platíme, ale to neznamená, že cestovné je úmerné vzdialenosti.



Podobné články