Acid compounds. Acids: classification and chemical properties

16.10.2019

Acids are such chemical compounds that are able to donate an electrically charged hydrogen ion (cation) and also accept two interacting electrons, as a result of which a covalent bond is formed.

In this article, we will look at the main acids that are studied in the middle classes of comprehensive schools, and also learn a lot of interesting facts about a wide variety of acids. Let's get started.

Acids: types

In chemistry, there are many different acids that have a variety of properties. Chemists distinguish acids by their oxygen content, volatility, solubility in water, strength, stability, belonging to an organic or inorganic class of chemical compounds. In this article, we will look at a table that presents the most famous acids. The table will help you remember the name of the acid and its chemical formula.

So, everything is clearly visible. This table presents the most famous acids in the chemical industry. The table will help you remember the names and formulas much faster.

Hydrosulphuric acid

H 2 S is hydrosulfide acid. Its peculiarity lies in the fact that it is also a gas. Hydrogen sulfide is very poorly soluble in water, and also interacts with many metals. Hydrosulphuric acid belongs to the group of "weak acids", examples of which we will consider in this article.

H 2 S has a slightly sweet taste and a very strong smell of rotten eggs. In nature, it can be found in natural or volcanic gases, and it is also released when protein rots.

The properties of acids are very diverse, even if the acid is indispensable in industry, it can be very unhealthy for human health. This acid is highly toxic to humans. When a small amount of hydrogen sulfide is inhaled, a person wakes up with a headache, severe nausea and dizziness begin. If a person inhales a large amount of H 2 S, then this can lead to convulsions, coma, or even instant death.

Sulfuric acid

H 2 SO 4 is a strong sulfuric acid that children get acquainted with in chemistry lessons as early as the 8th grade. Chemical acids such as sulfuric are very strong oxidizing agents. H 2 SO 4 acts as an oxidizing agent on many metals, as well as basic oxides.

H 2 SO 4 causes chemical burns on contact with skin or clothing, but is not as toxic as hydrogen sulfide.

Nitric acid

Strong acids are very important in our world. Examples of such acids: HCl, H 2 SO 4 , HBr, HNO 3 . HNO 3 is the well-known nitric acid. It has found wide application in industry as well as in agriculture. It is used for the manufacture of various fertilizers, in jewelry, in photographic printing, in the production of medicines and dyes, as well as in the military industry.

Chemical acids such as nitric acid are very harmful to the body. Vapors of HNO 3 leave ulcers, cause acute inflammation and irritation of the respiratory tract.

Nitrous acid

Nitrous acid is often confused with nitric acid, but there is a difference between them. The fact is that it is much weaker than nitrogen, it has completely different properties and effects on the human body.

HNO 2 has found wide application in the chemical industry.

Hydrofluoric acid

Hydrofluoric acid (or hydrogen fluoride) is a solution of H 2 O with HF. The formula of the acid is HF. Hydrofluoric acid is very actively used in the aluminum industry. It dissolves silicates, etchs silicon, silicate glass.

Hydrogen fluoride is very harmful to the human body, depending on its concentration it can be a light drug. When it comes into contact with the skin, at first there are no changes, but after a few minutes, a sharp pain and a chemical burn may appear. Hydrofluoric acid is very harmful to the environment.

Hydrochloric acid

HCl is hydrogen chloride and is a strong acid. Hydrogen chloride retains the properties of acids belonging to the group of strong acids. In appearance, the acid is transparent and colorless, but smokes in air. Hydrogen chloride is widely used in the metallurgical and food industries.

This acid causes chemical burns, but it is especially dangerous if it gets into the eyes.

Phosphoric acid

Phosphoric acid (H 3 PO 4) is a weak acid in its properties. But even weak acids can have the properties of strong ones. For example, H 3 PO 4 is used in industry to recover iron from rust. In addition, phosphoric (or phosphoric) acid is widely used in agriculture - a wide variety of fertilizers are made from it.

The properties of acids are very similar - almost each of them is very harmful to the human body, H 3 PO 4 is no exception. For example, this acid also causes severe chemical burns, nosebleeds, and tooth decay.

Carbonic acid

H 2 CO 3 is a weak acid. It is obtained by dissolving CO 2 (carbon dioxide) in H 2 O (water). Carbonic acid is used in biology and biochemistry.

Density of various acids

The density of acids occupies an important place in the theoretical and practical parts of chemistry. Thanks to the knowledge of density, it is possible to determine the concentration of a particular acid, solve chemical problems and add the correct amount of acid to complete the reaction. The density of any acid varies with concentration. For example, the greater the percentage of concentration, the greater the density.

General properties of acids

Absolutely all acids are (that is, they consist of several elements of the periodic table), while they necessarily include H (hydrogen) in their composition. Next, we will look at which are common:

  1. All oxygen-containing acids (in the formula of which O is present) form water during decomposition, and also anoxic acids decompose into simple substances (for example, 2HF decomposes into F 2 and H 2).
  2. Oxidizing acids interact with all metals in the metal activity series (only with those located to the left of H).
  3. They interact with various salts, but only with those that were formed by an even weaker acid.

According to their physical properties, acids differ sharply from each other. After all, they can have a smell and not have it, as well as be in a variety of aggregate states: liquid, gaseous and even solid. Solid acids are very interesting for studying. Examples of such acids: C 2 H 2 0 4 and H 3 BO 3.

Concentration

Concentration is a quantity that determines the quantitative composition of any solution. For example, chemists often need to determine how much pure sulfuric acid is in dilute H 2 SO 4 acid. To do this, they pour a small amount of dilute acid into a beaker, weigh it, and determine the concentration from a density chart. The concentration of acids is closely related to the density, often there are calculation tasks to determine the concentration, where you need to determine the percentage of pure acid in the solution.

Classification of all acids according to the number of H atoms in their chemical formula

One of the most popular classifications is the division of all acids into monobasic, dibasic and, accordingly, tribasic acids. Examples of monobasic acids: HNO 3 (nitric), HCl (hydrochloric), HF (hydrofluoric) and others. These acids are called monobasic, since only one H atom is present in their composition. There are many such acids, it is impossible to remember absolutely every one. You just need to remember that acids are also classified by the number of H atoms in their composition. Dibasic acids are defined similarly. Examples: H 2 SO 4 (sulphuric), H 2 S (hydrogen sulfide), H 2 CO 3 (coal) and others. Tribasic: H 3 PO 4 (phosphoric).

Basic classification of acids

One of the most popular classifications of acids is their division into oxygen-containing and anoxic acids. How to remember, without knowing the chemical formula of a substance, that it is an oxygen-containing acid?

All oxygen-free acids in the composition lack the important element O - oxygen, but they contain H. Therefore, the word "hydrogen" is always attributed to their name. HCl is a H 2 S - hydrogen sulfide.

But even by the names of acid-containing acids, you can write a formula. For example, if the number of O atoms in a substance is 4 or 3, then the suffix -n- is always added to the name, as well as the ending -aya-:

  • H 2 SO 4 - sulfuric (number of atoms - 4);
  • H 2 SiO 3 - silicon (number of atoms - 3).

If the substance has less than three oxygen atoms or three, then the suffix -ist- is used in the name:

  • HNO 2 - nitrogenous;
  • H 2 SO 3 - sulfurous.

General properties

All acids taste sour and often slightly metallic. But there are other similar properties, which we will now consider.

There are substances that are called indicators. Indicators change their color, or the color remains, but its hue changes. This happens when some other substances, such as acids, act on the indicators.

An example of a color change is such a product familiar to many as tea and citric acid. When lemon is thrown into tea, the tea gradually begins to noticeably lighten. This is due to the fact that lemon contains citric acid.

There are other examples as well. Litmus, which in a neutral medium has a lilac color, turns red when hydrochloric acid is added.

With tensions up to hydrogen in the series, gas bubbles are released - H. However, if a metal that is in the tension series after H is placed in a test tube with acid, then no reaction will occur, there will be no gas evolution. So, copper, silver, mercury, platinum and gold will not react with acids.

In this article, we examined the most famous chemical acids, as well as their main properties and differences.

Complex substances consisting of hydrogen atoms and an acidic residue are called mineral or inorganic acids. The acid residue is oxides and non-metals combined with hydrogen. The main property of acids is the ability to form salts.

Classification

The basic formula of mineral acids is H n Ac, where Ac is the acid residue. Depending on the composition of the acid residue, two types of acids are distinguished:

  • oxygen containing oxygen;
  • oxygen-free, consisting only of hydrogen and non-metal.

The main list of inorganic acids according to the type is presented in the table.

Type

Name

Formula

Oxygen

nitrogenous

dichrome

Iodine

Silicon - metasilicon and orthosilicon

H 2 SiO 3 and H 4 SiO 4

manganese

manganese

Metaphosphoric

Arsenic

orthophosphoric

sulphurous

Thiosulphuric

Tetrathionic

Coal

Phosphorous

Phosphorous

Chlorine

Chloride

hypochlorous

Chrome

cyanic

Anoxic

Hydrofluoric (hydrofluoric)

Hydrochloric (hydrochloric)

Hydrobromic

Hydroiodine

Hydrogen sulfide

Hydrogen cyanide

In addition, in accordance with the properties of the acid are classified according to the following criteria:

  • solubility: soluble (HNO 3 , HCl) and insoluble (H 2 SiO 3);
  • volatility: volatile (H 2 S, HCl) and non-volatile (H 2 SO 4 , H 3 PO 4);
  • degree of dissociation: strong (HNO 3) and weak (H 2 CO 3).

Rice. 1. Scheme for the classification of acids.

Traditional and trivial names are used to designate mineral acids. Traditional names correspond to the name of the element that forms the acid with the addition of the morphemic -naya, -ovaya, as well as -pure, -novataya, -novaty to indicate the degree of oxidation.

Receipt

The main methods for obtaining acids are presented in the table.

Properties

Most acids are sour-tasting liquids. Tungsten, chromic, boric and several other acids are in a solid state under normal conditions. Some acids (H 2 CO 3, H 2 SO 3, HClO) exist only in the form of an aqueous solution and are weak acids.

Rice. 2. Chromic acid.

Acids are active substances that react:

  • with metals:

    Ca + 2HCl \u003d CaCl 2 + H 2;

  • with oxides:

    CaO + 2HCl \u003d CaCl 2 + H 2 O;

  • with base:

    H 2 SO 4 + 2KOH \u003d K 2 SO 4 + 2H 2 O;

  • with salts:

    Na 2 CO 3 + 2HCl \u003d 2NaCl + CO 2 + H 2 O.

All reactions are accompanied by the formation of salts.

A qualitative reaction is possible with a change in the color of the indicator:

  • litmus turns red;
  • methyl orange - in pink;
  • phenolphthalein does not change.

Rice. 3. Colors of indicators during acid interaction.

The chemical properties of mineral acids are determined by the ability to dissociate in water with the formation of hydrogen cations and anions of hydrogen residues. Acids that react with water irreversibly (dissociate completely) are called strong acids. These include chlorine, nitrogen, sulfuric and hydrochloric.

What have we learned?

Inorganic acids are formed by hydrogen and an acidic residue, which are non-metal atoms or an oxide. Depending on the nature of the acid residue, acids are classified into anoxic and oxygen-containing. All acids have a sour taste and are able to dissociate in an aqueous medium (decompose into cations and anions). Acids are obtained from simple substances, oxides, salts. When interacting with metals, oxides, bases, salts, acids form salts.

Topic quiz

Report Evaluation

Average rating: 4.4. Total ratings received: 120.

Names of some inorganic acids and salts

Acid formulasNames of acidsNames of the corresponding salts
HClO 4 chloride perchlorates
HClO 3 chlorine chlorates
HClO 2 chloride chlorites
HClO hypochlorous hypochlorites
H5IO6 iodine periodates
HIO 3 iodine iodates
H2SO4 sulfuric sulfates
H2SO3 sulphurous sulfites
H2S2O3 thiosulfuric thiosulfates
H2S4O6 tetrathionic tetrathionates
H NO 3 nitric nitrates
H NO 2 nitrogenous nitrites
H3PO4 orthophosphoric orthophosphates
HPO3 metaphosphoric metaphosphates
H3PO3 phosphorous phosphites
H3PO2 phosphorous hypophosphites
H2CO3 coal carbonates
H2SiO3 silicon silicates
HMnO 4 manganese permanganates
H2MnO4 manganese manganates
H2CrO4 chrome chromates
H2Cr2O7 dichrome dichromates
HF hydrofluoric (hydrofluoric) fluorides
HCl hydrochloric (hydrochloric) chlorides
HBr hydrobromic bromides
HI hydroiodic iodides
H 2 S hydrogen sulfide sulfides
HCN hydrocyanic cyanides
HOCN cyanic cyanates

Let me briefly remind you with specific examples of how salts should be properly named.


Example 1. Salt K 2 SO 4 is formed by the rest of sulfuric acid (SO 4) and metal K. Salts of sulfuric acid are called sulfates. K 2 SO 4 - potassium sulfate.

Example 2. FeCl 3 - the composition of the salt includes iron and the rest of hydrochloric acid (Cl). Name of the salt: iron(III) chloride. Please note: in this case, we not only have to name the metal, but also indicate its valency (III). In the previous example, this was not necessary, since the valency of sodium is constant.

Important: in the name of the salt, the valency of the metal should be indicated only if this metal has a variable valency!

Example 3. Ba (ClO) 2 - the composition of the salt includes barium and the remainder of hypochlorous acid (ClO). Name of salt: barium hypochlorite. The valency of the Ba metal in all its compounds is two, it is not necessary to indicate it.

Example 4. (NH 4) 2 Cr 2 O 7. The NH 4 group is called ammonium, the valence of this group is constant. Salt name: ammonium dichromate (bichromate).

In the above examples, we met only the so-called. medium or normal salts. Acid, basic, double and complex salts, salts of organic acids will not be discussed here.

Acid formulasNames of acidsNames of the corresponding salts
HClO 4 chloride perchlorates
HClO 3 chlorine chlorates
HClO 2 chloride chlorites
HClO hypochlorous hypochlorites
H5IO6 iodine periodates
HIO 3 iodine iodates
H2SO4 sulfuric sulfates
H2SO3 sulphurous sulfites
H2S2O3 thiosulfuric thiosulfates
H2S4O6 tetrathionic tetrathionates
HNO3 nitric nitrates
HNO 2 nitrogenous nitrites
H3PO4 orthophosphoric orthophosphates
HPO 3 metaphosphoric metaphosphates
H3PO3 phosphorous phosphites
H3PO2 phosphorous hypophosphites
H2CO3 coal carbonates
H2SiO3 silicon silicates
HMnO 4 manganese permanganates
H2MnO4 manganese manganates
H2CrO4 chrome chromates
H2Cr2O7 dichrome dichromates
HF hydrofluoric (hydrofluoric) fluorides
HCl hydrochloric (hydrochloric) chlorides
HBr hydrobromic bromides
HI hydroiodic iodides
H 2 S hydrogen sulfide sulfides
HCN hydrocyanic cyanides
HOCN cyanic cyanates

Let me briefly remind you with specific examples of how salts should be properly named.


Example 1. Salt K 2 SO 4 is formed by the rest of sulfuric acid (SO 4) and metal K. Salts of sulfuric acid are called sulfates. K 2 SO 4 - potassium sulfate.

Example 2. FeCl 3 - the composition of the salt includes iron and the rest of hydrochloric acid (Cl). Name of the salt: iron(III) chloride. Please note: in this case, we not only have to name the metal, but also indicate its valency (III). In the previous example, this was not necessary, since the valency of sodium is constant.

Important: in the name of the salt, the valency of the metal should be indicated only if this metal has a variable valency!

Example 3. Ba (ClO) 2 - the composition of the salt includes barium and the remainder of hypochlorous acid (ClO). Name of salt: barium hypochlorite. The valency of the Ba metal in all its compounds is two, it is not necessary to indicate it.

Example 4. (NH 4) 2 Cr 2 O 7. The NH 4 group is called ammonium, the valence of this group is constant. Salt name: ammonium dichromate (bichromate).

In the above examples, we met only the so-called. medium or normal salts. Acid, basic, double and complex salts, salts of organic acids will not be discussed here.

If you are interested not only in the nomenclature of salts, but also in the methods for their preparation and chemical properties, I recommend that you refer to the relevant sections of the reference book on chemistry: "

Classification of inorganic substances with examples of compounds

Let us now analyze the classification scheme presented above in more detail.

As we can see, first of all, all inorganic substances are divided into simple And complex:

simple substances substances that are formed by atoms of only one chemical element are called. For example, simple substances are hydrogen H 2 , oxygen O 2 , iron Fe, carbon C, etc.

Among simple substances, there are metals, nonmetals And noble gases:

Metals are formed by chemical elements located below the boron-astat diagonal, as well as by all elements that are in side groups.

noble gases formed by chemical elements of group VIIIA.

non-metals formed respectively by chemical elements located above the boron-astat diagonal, with the exception of all elements of secondary subgroups and noble gases located in group VIIIA:

The names of simple substances most often coincide with the names of the chemical elements whose atoms they are formed. However, for many chemical elements, the phenomenon of allotropy is widespread. Allotropy is the phenomenon when one chemical element is able to form several simple substances. For example, in the case of the chemical element oxygen, the existence of molecular compounds with the formulas O 2 and O 3 is possible. The first substance is usually called oxygen in the same way as the chemical element whose atoms it is formed, and the second substance (O 3) is usually called ozone. The simple substance carbon can mean any of its allotropic modifications, for example, diamond, graphite or fullerenes. The simple substance phosphorus can be understood as its allotropic modifications, such as white phosphorus, red phosphorus, black phosphorus.

Complex Substances

complex substances Substances made up of atoms of two or more elements are called.

So, for example, ammonia NH 3, sulfuric acid H 2 SO 4, slaked lime Ca (OH) 2 and countless others are complex substances.

Among complex inorganic substances, 5 main classes are distinguished, namely oxides, bases, amphoteric hydroxides, acids and salts:

oxides - complex substances formed by two chemical elements, one of which is oxygen in the -2 oxidation state.

The general formula for oxides can be written as E x O y, where E is the symbol of a chemical element.

Nomenclature of oxides

The name of the oxide of a chemical element is based on the principle:

For example:

Fe 2 O 3 - iron oxide (III); CuO, copper(II) oxide; N 2 O 5 - nitric oxide (V)

Often you can find information that the valency of the element is indicated in brackets, but this is not the case. So, for example, the oxidation state of nitrogen N 2 O 5 is +5, and the valency, oddly enough, is four.

If a chemical element has a single positive oxidation state in compounds, then the oxidation state is not indicated. For example:

Na 2 O - sodium oxide; H 2 O - hydrogen oxide; ZnO is zinc oxide.

Classification of oxides

Oxides, according to their ability to form salts when interacting with acids or bases, are divided, respectively, into salt-forming And non-salt-forming.

There are few non-salt-forming oxides, all of them are formed by non-metals in the oxidation state +1 and +2. The list of non-salt-forming oxides should be remembered: CO, SiO, N 2 O, NO.

Salt-forming oxides, in turn, are divided into main, acidic And amphoteric.

Basic oxides called such oxides, which, when interacting with acids (or acid oxides), form salts. The main oxides include metal oxides in the oxidation state +1 and +2, with the exception of oxides of BeO, ZnO, SnO, PbO.

Acid oxides called such oxides, which, when interacting with bases (or basic oxides), form salts. Acid oxides are almost all oxides of non-metals with the exception of non-salt-forming CO, NO, N 2 O, SiO, as well as all metal oxides in high oxidation states (+5, +6 and +7).

amphoteric oxides called oxides, which can react with both acids and bases, and as a result of these reactions form salts. Such oxides exhibit a dual acid-base nature, that is, they can exhibit the properties of both acidic and basic oxides. Amphoteric oxides include metal oxides in oxidation states +3, +4, and, as exceptions, oxides of BeO, ZnO, SnO, PbO.

Some metals can form all three types of salt-forming oxides. For example, chromium forms basic oxide CrO, amphoteric oxide Cr 2 O 3 and acid oxide CrO 3 .

As can be seen, the acid-base properties of metal oxides directly depend on the degree of oxidation of the metal in the oxide: the higher the degree of oxidation, the more pronounced the acidic properties.

Foundations

Foundations - compounds with a formula of the form Me (OH) x, where x most often equal to 1 or 2.

Base classification

Bases are classified according to the number of hydroxo groups in one structural unit.

Bases with one hydroxo group, i.e. type MeOH, called single acid bases with two hydroxo groups, i.e. type Me(OH) 2 , respectively, diacid etc.

Also, the bases are divided into soluble (alkali) and insoluble.

Alkalis include exclusively hydroxides of alkali and alkaline earth metals, as well as thallium hydroxide TlOH.

Base nomenclature

The name of the foundation is built according to the following principle:

For example:

Fe (OH) 2 - iron (II) hydroxide,

Cu (OH) 2 - copper (II) hydroxide.

In cases where the metal in complex substances has a constant oxidation state, it is not required to indicate it. For example:

NaOH - sodium hydroxide,

Ca (OH) 2 - calcium hydroxide, etc.

acids

acids - complex substances, the molecules of which contain hydrogen atoms that can be replaced by a metal.

The general formula of acids can be written as H x A, where H are hydrogen atoms that can be replaced by a metal, and A is an acid residue.

For example, acids include compounds such as H 2 SO 4 , HCl, HNO 3 , HNO 2 , etc.

Acid classification

According to the number of hydrogen atoms that can be replaced by a metal, acids are divided into:

- O monobasic acids: HF, HCl, HBr, HI, HNO 3 ;

- d acetic acids: H 2 SO 4 , H 2 SO 3 , H 2 CO 3 ;

- T rebasic acids: H 3 PO 4 , H 3 BO 3 .

It should be noted that the number of hydrogen atoms in the case of organic acids most often does not reflect their basicity. For example, acetic acid with the formula CH 3 COOH, despite the presence of 4 hydrogen atoms in the molecule, is not four-, but monobasic. The basicity of organic acids is determined by the number of carboxyl groups (-COOH) in the molecule.

Also, according to the presence of oxygen in acid molecules, they are divided into anoxic (HF, HCl, HBr, etc.) and oxygen-containing (H 2 SO 4, HNO 3, H 3 PO 4, etc.). Oxygenated acids are also called oxo acids.

You can read more about the classification of acids.

Nomenclature of acids and acid residues

The following list of names and formulas of acids and acid residues should be learned.

In some cases, a number of the following rules can make memorization easier.

As can be seen from the table above, the construction of the systematic names of anoxic acids is as follows:

For example:

HF, hydrofluoric acid;

HCl, hydrochloric acid;

H 2 S - hydrosulfide acid.

The names of the acid residues of oxygen-free acids are built according to the principle:

For example, Cl - - chloride, Br - - bromide.

The names of oxygen-containing acids are obtained by adding various suffixes and endings to the name of the acid-forming element. For example, if the acid-forming element in an oxygen-containing acid has the highest oxidation state, then the name of such an acid is constructed as follows:

For example, sulfuric acid H 2 S +6 O 4, chromic acid H 2 Cr +6 O 4.

All oxygen-containing acids can also be classified as acidic hydroxides, since hydroxo groups (OH) are found in their molecules. For example, this can be seen from the following graphical formulas of some oxygen-containing acids:

Thus, sulfuric acid may otherwise be called sulfur (VI) hydroxide, nitric acid - nitrogen (V) hydroxide, phosphoric acid - phosphorus (V) hydroxide, etc. The number in brackets characterizes the degree of oxidation of the acid-forming element. Such a variant of the names of oxygen-containing acids may seem extremely unusual to many, but occasionally such names can be found in real KIMs of the Unified State Examination in chemistry in assignments for the classification of inorganic substances.

Amphoteric hydroxides

Amphoteric hydroxides - metal hydroxides exhibiting a dual nature, i.e. able to exhibit both the properties of acids and the properties of bases.

Amphoteric are metal hydroxides in oxidation states +3 and +4 (as well as oxides).

Also, compounds Be (OH) 2, Zn (OH) 2, Sn (OH) 2 and Pb (OH) 2 are included as exceptions to amphoteric hydroxides, despite the degree of oxidation of the metal in them +2.

For amphoteric hydroxides of tri- and tetravalent metals, the existence of ortho- and meta-forms is possible, differing from each other by one water molecule. For example, aluminum (III) hydroxide can exist in the ortho form of Al(OH) 3 or the meta form of AlO(OH) (metahydroxide).

Since, as already mentioned, amphoteric hydroxides exhibit both the properties of acids and the properties of bases, their formula and name can also be written differently: either as a base or as an acid. For example:

salt

So, for example, salts include compounds such as KCl, Ca(NO 3) 2, NaHCO 3, etc.

The above definition describes the composition of most salts, however, there are salts that do not fall under it. For example, instead of metal cations, the salt may contain ammonium cations or its organic derivatives. Those. salts include compounds such as, for example, (NH 4) 2 SO 4 (ammonium sulfate), + Cl - (methylammonium chloride), etc.

Salt classification

On the other hand, salts can be considered as products of substitution of hydrogen cations H + in an acid for other cations, or as products of substitution of hydroxide ions in bases (or amphoteric hydroxides) for other anions.

With complete substitution, the so-called medium or normal salt. For example, with the complete replacement of hydrogen cations in sulfuric acid with sodium cations, an average (normal) salt Na 2 SO 4 is formed, and with the complete replacement of hydroxide ions in the Ca (OH) 2 base with acid residues, nitrate ions form an average (normal) salt Ca(NO3)2.

Salts obtained by incomplete replacement of hydrogen cations in a dibasic (or more) acid with metal cations are called acid salts. So, with incomplete replacement of hydrogen cations in sulfuric acid by sodium cations, an acid salt NaHSO 4 is formed.

Salts that are formed by incomplete substitution of hydroxide ions in two-acid (or more) bases are called basic O salts. For example, with incomplete replacement of hydroxide ions in the Ca (OH) 2 base with nitrate ions, a basic O clear salt Ca(OH)NO 3 .

Salts consisting of cations of two different metals and anions of acid residues of only one acid are called double salts. So, for example, double salts are KNaCO 3 , KMgCl 3 , etc.

If the salt is formed by one type of cation and two types of acid residues, such salts are called mixed. For example, mixed salts are the compounds Ca(OCl)Cl, CuBrCl, etc.

There are salts that do not fall under the definition of salts as products of substitution of hydrogen cations in acids for metal cations or products of substitution of hydroxide ions in bases for anions of acid residues. These are complex salts. So, for example, complex salts are sodium tetrahydroxozincate and tetrahydroxoaluminate with the formulas Na 2 and Na, respectively. Recognize complex salts, among others, most often by the presence of square brackets in the formula. However, it must be understood that in order for a substance to be classified as a salt, its composition must include any cations, except for (or instead of) H +, and from the anions there must be any anions in addition to (or instead of) OH -. For example, the compound H 2 does not belong to the class of complex salts, since only hydrogen cations H + are present in solution during its dissociation from cations. According to the type of dissociation, this substance should rather be classified as an oxygen-free complex acid. Similarly, the OH compound does not belong to the salts, because this compound consists of cations + and hydroxide ions OH -, i.e. it should be considered a complex basis.

Salt nomenclature

Nomenclature of medium and acid salts

The name of medium and acid salts is based on the principle:

If the degree of oxidation of the metal in complex substances is constant, then it is not indicated.

The names of the acid residues were given above when considering the nomenclature of acids.

For example,

Na 2 SO 4 - sodium sulfate;

NaHSO 4 - sodium hydrosulfate;

CaCO 3 - calcium carbonate;

Ca (HCO 3) 2 - calcium bicarbonate, etc.

Nomenclature of basic salts

The names of the main salts are built according to the principle:

For example:

(CuOH) 2 CO 3 - copper (II) hydroxocarbonate;

Fe (OH) 2 NO 3 - iron (III) dihydroxonitrate.

Nomenclature of complex salts

The nomenclature of complex compounds is much more complicated, and you don’t need to know much from the nomenclature of complex salts to pass the exam.

One should be able to name complex salts obtained by the interaction of alkali solutions with amphoteric hydroxides. For example:

*The same colors in the formula and the name indicate the corresponding elements of the formula and the name.

Trivial names of inorganic substances

Trivial names are understood as the names of substances that are not related, or weakly related to their composition and structure. Trivial names are due, as a rule, either to historical reasons or to the physical or chemical properties of these compounds.

List of trivial names of inorganic substances that you need to know:

Na 3 cryolite
SiO2 quartz, silica
FeS 2 pyrite, iron pyrite
CaSO 4 ∙2H 2 O gypsum
CaC2 calcium carbide
Al 4 C 3 aluminum carbide
KOH caustic potash
NaOH caustic soda, caustic soda
H2O2 hydrogen peroxide
CuSO 4 ∙5H 2 O blue vitriol
NH4Cl ammonia
CaCO3 chalk, marble, limestone
N2O laughing gas
NO 2 brown gas
NaHCO3 food (drinking) soda
Fe 3 O 4 iron oxide
NH 3 ∙H 2 O (NH 4 OH) ammonia
CO carbon monoxide
CO2 carbon dioxide
SiC carborundum (silicon carbide)
PH 3 phosphine
NH3 ammonia
KClO 3 berthollet salt (potassium chlorate)
(CuOH) 2 CO 3 malachite
CaO quicklime
Ca(OH)2 slaked lime
transparent aqueous solution of Ca(OH) 2 lime water
a suspension of solid Ca (OH) 2 in its aqueous solution milk of lime
K2CO3 potash
Na2CO3 soda ash
Na 2 CO 3 ∙10H 2 O crystal soda
MgO magnesia


Similar articles